( 3 4 − 1 1 1 − 1 3 1 4 − 3 11 2 ) \begin{pmatrix}
3 & 4 & -1 & 1\\
1 & -1 & 3& 1\\
4 & -3 & 11 & 2
\end{pmatrix} ⎝ ⎛ 3 1 4 4 − 1 − 3 − 1 3 11 1 1 2 ⎠ ⎞
Let's divide the 1st row by 3
( 1 4 / 3 − 1 / 3 1 / 3 1 − 1 3 1 4 − 3 11 2 ) \begin{pmatrix}
1 & 4/3 & -1/3 & 1/3\\
1 & -1 & 3& 1\\
4 & -3 & 11 & 2
\end{pmatrix} ⎝ ⎛ 1 1 4 4/3 − 1 − 3 − 1/3 3 11 1/3 1 2 ⎠ ⎞
From the 2nd row we have to subtract the first row; from the 3rd row we have to subtract the 4 times first row.
( 1 4 / 3 − 1 / 3 1 / 3 0 − 7 / 3 10 / 3 2 / 3 0 − 25 / 3 37 / 3 2 / 3 ) \begin{pmatrix}
1 & 4/3 & -1/3 & 1/3\\
0 & -7/3 & 10/3& 2/3\\
0 & -25/3 & 37/3 & 2/3
\end{pmatrix} ⎝ ⎛ 1 0 0 4/3 − 7/3 − 25/3 − 1/3 10/3 37/3 1/3 2/3 2/3 ⎠ ⎞
Let's divide the second row by -7/3
( 1 4 / 3 − 1 / 3 1 / 3 0 1 − 10 / 7 − 2 / 7 0 − 25 / 3 37 / 3 2 / 3 ) \begin{pmatrix}
1 & 4/3 & -1/3 & 1/3\\
0 & 1 & -10/7& -2/7\\
0 & -25/3 & 37/3 & 2/3
\end{pmatrix} ⎝ ⎛ 1 0 0 4/3 1 − 25/3 − 1/3 − 10/7 37/3 1/3 − 2/7 2/3 ⎠ ⎞
To the third row we have to add the second row multiplied by 25/3
( 1 4 / 3 − 1 / 3 1 / 3 0 1 − 10 / 7 − 2 / 7 0 0 3 / 7 − 12 / 7 ) \begin{pmatrix}
1 & 4/3 & -1/3 & 1/3\\
0 & 1 & -10/7& -2/7\\
0 & 0 & 3/7 & -12/7
\end{pmatrix} ⎝ ⎛ 1 0 0 4/3 1 0 − 1/3 − 10/7 3/7 1/3 − 2/7 − 12/7 ⎠ ⎞
Let's divide the third row by 3/7
So the answer is: ( 1 4 / 3 − 1 / 3 1 / 3 0 1 − 10 / 7 − 2 / 7 0 0 1 − 4 ) \begin{pmatrix}
1 & 4/3 & -1/3 & 1/3\\
0 & 1 & -10/7& -2/7\\
0 & 0 & 1 & -4
\end{pmatrix} ⎝ ⎛ 1 0 0 4/3 1 0 − 1/3 − 10/7 1 1/3 − 2/7 − 4 ⎠ ⎞
Comments