Question #158368

Find all possible rational canonical form for a 6×6 matrix over R with minimal polynomial m(t)= (t2 -2t +3)(t+1)2

1
Expert's answer
2021-01-29T00:33:06-0500

Find comparision matrices of invariant factors:

for t+1t+1 :

C1=[1]C_1=[-1]

for t22t+3t^2-2t+3 :

C2=(0312)C_2=\begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix}

for m(t)=(t22t+3)(t+1)2=t4t2+t+3m(t)= (t^2 -2t +3)(t+1)^2=t^4-t^2+t+3

C4=(0003100101010010)C_4=\begin{pmatrix} 0 & 0&0&-3 \\ 1 & 0&0&-1\\ 0&1&0&1\\ 0&0&1&0 \\ \end{pmatrix}


for (t22t+3)(t+1)=t3t2+t+3(t^2 -2t +3)(t+1)=t^3-t^2+t+3

C3=(003101011)C_3=\begin{pmatrix} 0 & 0&-3 \\ 1 & 0&-1\\ 0&1& 1 \\ \end{pmatrix}


If m(t)=q1m1...qimim(t)=q^{m_1}_1...q^{m_i}_i , then

size of block: nj(deg(q0j))n_j(deg(q_{0j}))

# blocks: dim(Null(q0j(A)))deg(qj)\frac{dim (Null(q_{0j}(A)))}{deg(q_j)}


Possible rational canonical form for a 6×6 matrix:






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS