Find comparision matrices of invariant factors:
for t + 1 t+1 t + 1 :
C 1 = [ − 1 ] C_1=[-1] C 1 = [ − 1 ]
for t 2 − 2 t + 3 t^2-2t+3 t 2 − 2 t + 3 :
C 2 = ( 0 − 3 1 2 ) C_2=\begin{pmatrix}
0 & -3 \\
1 & 2
\end{pmatrix} C 2 = ( 0 1 − 3 2 )
for m ( t ) = ( t 2 − 2 t + 3 ) ( t + 1 ) 2 = t 4 − t 2 + t + 3 m(t)= (t^2 -2t +3)(t+1)^2=t^4-t^2+t+3 m ( t ) = ( t 2 − 2 t + 3 ) ( t + 1 ) 2 = t 4 − t 2 + t + 3
C 4 = ( 0 0 0 − 3 1 0 0 − 1 0 1 0 1 0 0 1 0 ) C_4=\begin{pmatrix}
0 & 0&0&-3 \\
1 & 0&0&-1\\
0&1&0&1\\
0&0&1&0 \\
\end{pmatrix} C 4 = ⎝ ⎛ 0 1 0 0 0 0 1 0 0 0 0 1 − 3 − 1 1 0 ⎠ ⎞
for ( t 2 − 2 t + 3 ) ( t + 1 ) = t 3 − t 2 + t + 3 (t^2 -2t +3)(t+1)=t^3-t^2+t+3 ( t 2 − 2 t + 3 ) ( t + 1 ) = t 3 − t 2 + t + 3
C 3 = ( 0 0 − 3 1 0 − 1 0 1 1 ) C_3=\begin{pmatrix}
0 & 0&-3 \\
1 & 0&-1\\
0&1& 1 \\
\end{pmatrix} C 3 = ⎝ ⎛ 0 1 0 0 0 1 − 3 − 1 1 ⎠ ⎞
If m ( t ) = q 1 m 1 . . . q i m i m(t)=q^{m_1}_1...q^{m_i}_i m ( t ) = q 1 m 1 ... q i m i , then
size of block: n j ( d e g ( q 0 j ) ) n_j(deg(q_{0j})) n j ( d e g ( q 0 j ))
# blocks: d i m ( N u l l ( q 0 j ( A ) ) ) d e g ( q j ) \frac{dim (Null(q_{0j}(A)))}{deg(q_j)} d e g ( q j ) d im ( N u ll ( q 0 j ( A )))
Possible rational canonical form for a 6×6 matrix:
Comments