Question #158370

Let B={u1= (1, 1, -1) u2= (1, 0, 1) u3 = (3, 2, 0)} be a basis for R3. Find the dual basis of B


1
Expert's answer
2021-01-27T01:08:11-0500

The linear function may be expressed in the form

ϕ1(x,y,z)=a1x+a2y+a3z{\phi}_1(x,y,z)=a_1x+a_2y+a_3z , ϕ2(x,y,z)=b1x+b2y+b3z,\phi_2(x,y,z)=b_1x+b_2y+b_3z ,

ϕ3(x,y,z)=c1x+c2y+c3z\phi_3(x,y,z)=c_1x+c_2y+c_3z


By the definition of dual basis ,

ϕi(vj)=0 for ij\phi_i(v_j)=0 \ for \ i\neq j but ϕi(vj)=1\phi_i(v_j)=1 for i=ji=j .

We find ϕ1\phi_1 by setting ϕ1(u1)=1,ϕ1(u2)=0,ϕ1(u3)=0\phi_1(u_1)=1, \phi_1(u_2)=0,\phi_1(u_3)=0 . This yields

ϕ1(u1)=a1+a2a3=1,ϕ1(u2)=a1+a3=0 , ϕ1(u3)=3a1+2a2=0\phi_1(u_1)=a_1+a_2-a_3=1,\phi_1(u_2)=a_1+a_3=0 \ , \ \phi_1(u_3)=3a_1+2a_2=0

Solving the system of equation yields

a1=2 , a2=3 , a3=2a_1=2 \ ,\ a_2=-3 \ , \ a_3=-2

Thus , ϕ1(x,y,z)=2x13x22x3\phi_1(x,y,z)=2x_1-3x_2-2x_3

We find ϕ2\phi_2 by setting , ϕ2(u1)=0 , ϕ2(u2)=1 , ϕ3(u3)=0\phi_2(u_1)=0 \ , \ \phi_2(u_2)=1 \ , \ \phi_3(u_3)=0 , This yields

ϕ1(u1)=b1+b2b3=0,ϕ1(u2)=b1+b3=1 , ϕ1(u3)=3b1+2b2=0\phi_1(u_1)=b_1+b_2-b_3=0,\phi_1(u_2)=b_1+b_3=1 \ , \ \phi_1(u_3)=3b_1+2b_2=0

Solving the system of equation yields

b1=2 , b2=3 , b3=1b_1=2 \ , \ b_2=-3 \ , \ b_3=-1

Thus , ϕ2(x,y,z)=2x3x2x3\phi_2(x,y,z)=2x - 3x_2 - x_3

Finally , we find ϕ3\phi_3 by setting ϕ1(u1)=c1+c2c3=0,ϕ1(u2)=c1+c3=0 , ϕ1(u3)=3c1+2c2=1\phi_1(u_1)=c_1+c_2-c_3=0,\phi_1(u_2)=c_1+c_3=0 \ , \ \phi_1(u_3)=3c_1+2c_2=1

Solving the system of equation yields , c1=0 , c2=12 , c3=0c_1=0 \ ,\ c_2=\frac{1}{2} \ , \ c_3=0 .

Thus , ϕ3(x,y,z)=12x2\phi_3(x,y,z)=\frac{1}{2}x_2 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS