The linear function may be expressed in the form
ϕ1(x,y,z)=a1x+a2y+a3z , ϕ2(x,y,z)=b1x+b2y+b3z,
ϕ3(x,y,z)=c1x+c2y+c3z
By the definition of dual basis ,
ϕi(vj)=0 for i=j but ϕi(vj)=1 for i=j .
We find ϕ1 by setting ϕ1(u1)=1,ϕ1(u2)=0,ϕ1(u3)=0 . This yields
ϕ1(u1)=a1+a2−a3=1,ϕ1(u2)=a1+a3=0 , ϕ1(u3)=3a1+2a2=0
Solving the system of equation yields
a1=2 , a2=−3 , a3=−2
Thus , ϕ1(x,y,z)=2x1−3x2−2x3
We find ϕ2 by setting , ϕ2(u1)=0 , ϕ2(u2)=1 , ϕ3(u3)=0 , This yields
ϕ1(u1)=b1+b2−b3=0,ϕ1(u2)=b1+b3=1 , ϕ1(u3)=3b1+2b2=0
Solving the system of equation yields
b1=2 , b2=−3 , b3=−1
Thus , ϕ2(x,y,z)=2x−3x2−x3
Finally , we find ϕ3 by setting ϕ1(u1)=c1+c2−c3=0,ϕ1(u2)=c1+c3=0 , ϕ1(u3)=3c1+2c2=1
Solving the system of equation yields , c1=0 , c2=21 , c3=0 .
Thus , ϕ3(x,y,z)=21x2 .
Comments