Let B={u1= (1, 1, -1) u2= (1, 0, 1) u3 = (3, 2, 0)} be a basis for R3. Find the dual basis of B
The linear function may be expressed in the form
"{\\phi}_1(x,y,z)=a_1x+a_2y+a_3z" , "\\phi_2(x,y,z)=b_1x+b_2y+b_3z ,"
"\\phi_3(x,y,z)=c_1x+c_2y+c_3z"
By the definition of dual basis ,
"\\phi_i(v_j)=0 \\ for \\ i\\neq j" but "\\phi_i(v_j)=1" for "i=j" .
We find "\\phi_1" by setting "\\phi_1(u_1)=1, \\phi_1(u_2)=0,\\phi_1(u_3)=0" . This yields
"\\phi_1(u_1)=a_1+a_2-a_3=1,\\phi_1(u_2)=a_1+a_3=0 \\ , \\ \\phi_1(u_3)=3a_1+2a_2=0"
Solving the system of equation yields
"a_1=2 \\ ,\\ a_2=-3 \\ , \\ a_3=-2"
Thus , "\\phi_1(x,y,z)=2x_1-3x_2-2x_3"
We find "\\phi_2" by setting , "\\phi_2(u_1)=0 \\ , \\ \\phi_2(u_2)=1 \\ , \\ \\phi_3(u_3)=0" , This yields
"\\phi_1(u_1)=b_1+b_2-b_3=0,\\phi_1(u_2)=b_1+b_3=1 \\ , \\ \\phi_1(u_3)=3b_1+2b_2=0"
Solving the system of equation yields
"b_1=2 \\ , \\ b_2=-3 \\ , \\ b_3=-1"
Thus , "\\phi_2(x,y,z)=2x - 3x_2 - x_3"
Finally , we find "\\phi_3" by setting "\\phi_1(u_1)=c_1+c_2-c_3=0,\\phi_1(u_2)=c_1+c_3=0 \\ , \\ \\phi_1(u_3)=3c_1+2c_2=1"
Solving the system of equation yields , "c_1=0 \\ ,\\ c_2=\\frac{1}{2} \\ , \\ c_3=0" .
Thus , "\\phi_3(x,y,z)=\\frac{1}{2}x_2" .
Comments
Leave a comment