(i) A="\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}"
Let I="\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}"
Applying IA=A
"\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}" "\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}" ="\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}"
Applying "R_1\\to2R_1"
"\\begin{bmatrix}\n 2 & 0 \\\\\n 0 & 1\n\\end{bmatrix}\n\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}\n=\\begin{bmatrix}\n {1} & -6\\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}"
Applying "R_2\\to R_2-2R_1"
"\\begin{bmatrix}\n 2 & 0 \\\\\n -2 & 1\n\\end{bmatrix}\n\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}\n=\\begin{bmatrix}\n {1} & -6\\\\\n 0 & \\frac{183}{15}\n\\end{bmatrix}"
Applying "R_1\\to R_1+\\frac{90}{183}R_2"
"\\begin{bmatrix}\n \\frac{186}{183}& \\frac{90}{183} \\\\\n -2 & 1\n\\end{bmatrix}\n\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}\n=\\begin{bmatrix}\n {1} & 0\\\\\n 0 & \\frac{183}{15}\n\\end{bmatrix}"
applying "R_2\\to \\frac{15}{183}R_2"
"\\begin{bmatrix}\n \\frac{186}{183}& \\frac{90}{183} \\\\\n \\frac{-30}{183} & \\frac{15}{183}\n\\end{bmatrix}\n\\begin{bmatrix}\n \\frac{1}{2} & -3 \\\\\n 2 & \\frac{3}{15}\n\\end{bmatrix}\n=\\begin{bmatrix}\n {1} & 0\\\\\n 0 & 1\n\\end{bmatrix}"
Sequence of elementary matrix are
"\\begin{bmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{bmatrix}" "\\begin{bmatrix}\n 2 & 0 \\\\\n 0 & 1\n\\end{bmatrix}" "\\begin{bmatrix}\n 2 & 0 \\\\\n -2& 1\n\\end{bmatrix}\\begin{bmatrix}\n \\frac{186}{183} & \\frac{90}{183} \\\\\n -2 & 1\n\\end{bmatrix}\\begin{bmatrix}\n \\frac{186}{183} & \\frac{90}{183} \\\\\n \\frac{-30}{183} & \\frac{15}{183}\n\\end{bmatrix}" =A
(ii) Given equation are
"x_1+x_2+x_3=3"
"x_1-x_2+4x_3=4"
"2x_1+3x_2-5x_3=0"
A="\\begin{bmatrix}\n 1 & 1 &1\\\\\n 1 & -1&4\\\\\n 2 & 3 &-5\n\\end{bmatrix}" ,B="\\begin{bmatrix}\n 3 \\\\\n 4\\\\\n0\n\\end{bmatrix}" ,X="\\begin{bmatrix}\n x_1 \\\\\n x_2\\\\\nx_3\n\\end{bmatrix}"
Transforming matrix A to upper triangular matrix(U) using elementary row transformation and Lower triangular matrix(L) simultaneously
Applying "R_2\\to R_2-R_1"
"U=\\begin{bmatrix}\n 1 & 1 &1\\\\\n 0 & -2&3\\\\\n 2 & 3 &-5\n\\end{bmatrix}" ,L="\\begin{bmatrix}\n 1 & 0 &0\\\\\n 1 & 1&0\\\\\n 0 & 0 &1\n\\end{bmatrix}"
Appling "R_3\\to R_3-2R_1"
"U=\\begin{bmatrix}\n 1 & 1 &1\\\\\n 0 & -2&3\\\\\n 0 & 1 &-7\n\\end{bmatrix}" ,L="\\begin{bmatrix}\n 1 & 0 &0\\\\\n 1 & 1&0\\\\\n 2 & 0 &1\n\\end{bmatrix}"
Applying "R_3\\to R_3+\\frac{1}{2}R_2"
"U=\\begin{bmatrix}\n 1 & 1 &1\\\\\n 0 & -2&3\\\\\n 0 & 0 &\\frac{-11}{2}\n\\end{bmatrix}" ,L="\\begin{bmatrix}\n 1 & 0 &0\\\\\n 1 & 1&0\\\\\n 2 & \\frac{-1}{3}&1\n\\end{bmatrix}"
So LY=B
"\\begin{bmatrix}\n 1 & 0 &0\\\\\n 1 & 1&0\\\\\n 2 & 0 &1\n\\end{bmatrix}\n\\begin{bmatrix}\n y_1\\\\\n y_2\\\\\n y_3\n\\end{bmatrix}\n=\\begin{bmatrix}\n 3\\\\\n 4\\\\\n 0\n\\end{bmatrix}"
"\\begin{bmatrix}\n y_1\\\\\n y_1+y_2\\\\\n 2y_1+y_3\n\\end{bmatrix}" ="\\begin{bmatrix}\n 3\\\\\n 4\\\\\n 0\n\\end{bmatrix}"
"y_1=2,y_1+y_2=4,y_2=2"
"2y_1+y_3=0, y_3=-2"
Now UX=Y
"\\begin{bmatrix}\n 1 & 1 &1\\\\\n 0 & -2&3\\\\\n 0 & 1 &-7\n\\end{bmatrix}\n\\begin{bmatrix}\n x_1\\\\\n x_2\\\\\n x_3\n\\end{bmatrix}\n=\\begin{bmatrix}\n 2\\\\\n 2\\\\\n -2\n\\end{bmatrix}"
"x_1+x_2+x_3=2, -2x_2+3x_3=2"
"x_2-7x_3=-2"
Solving these equation we get,
"x_1=\\frac{28}{11},x_2=\\frac{-8}{11},x_3=\\frac{2}{11}"
Comments
Leave a comment