The smallest subspace of "M_{n} (R)" containing "\\begin{pmatrix}\n 1& 0 &\\cdots & 0 \\\\\n 0 & 1 &\\cdots & 0\\\\\n\\cdots & \\cdots &\\cdots\\\\\n0 & 0 & \\cdots & 1\\\\\n\\end{pmatrix}" is
"\\{\\lambda *" "\\begin{pmatrix}\n 1& 0 &\\cdots & 0 \\\\\n 0 & 1 &\\cdots & 0\\\\\n\\cdots & \\cdots &\\cdots\\\\\n0 & 0 & \\cdots & 1\\\\\n\\end{pmatrix}" "| \\lambda\\in R\\}"
"A=A^{T} ,B=B^{T} and \\ c\\in R"
Then (A+B)"^{T}" "=A^{T}+B^{T}=A+B"
Again (cA)"^{T}=c *A^{T}=c A"
Thefore set of all symmetric matrices is a subspace of "M_{n}(R)"
Comments
Leave a comment