Question #138165
Consider the real vector space
A = {(a, b, c, d) I a, b, c, d belongs to R, 2a + 3b = c + d}.
Find dim (A). Also find two distinct subspaces
B1. and B2 of R⁴ such that
A direct sum B1= R⁴=A direct sum B2
1
Expert's answer
2020-10-14T14:16:29-0400

The given vector space is

A={(a,b,c,d):a,b,c,dR,2a+3b=c+d}A=\{(a,b,c,d ) : a,b,c,d \in \R ,2a+3b=c+d\}

={(a,b,c,2a+3bc):a,b,cR}...........(1)=\{ (a,b,c,2a+3b-c):a,b,c \in\R\}...........(1)

={(a,b,2a+3bd,d):a,b,dR}..............(2)=\{ (a,b,2a+3b-d,d):a,b,d\in \R\}..............(2)

Since , AA is depending on three real number . Therefore d(A)=3d(A)=3

Consider the subset B1 and B2 of R4B_1 \ and \ B_2 \ of \ \R^4 defined as follow,

B1={(0,0,0,d):dR}B_1=\{(0,0,0,d):d\in \R \}

B2={(0,0,c,0):cR}B_2=\{ (0,0,c,0):c\in \R \}

Clearly, B1B_1 and B2B_2 are subspace of R4\R^4

If AA in the form (1) then Our claim is

R4=AB1\R^4=A\bigoplus B_1

Let (a,b,c,d)R4(a,b,c,d)\in \R^4 be any arbitrary element.

Then (a,b,c,d)=(a,b,c,2a+3bc)+(0,0,0,d2a3b+c)(a,b,c,d)=(a,b,c,2a+3b-c)+(0,0,0,d-2a-3b+c)

Clearly , (a,b,c,2a+3bc)A(a,b,c,2a+3b-c) \in A

and (0,0,0,d2a3b+c)B1(0,0,0,d-2a-3b+c)\in B_1

Hence , R4=A+B1\R^4=A+ B_1

Now , My next claim is

AB1={0}A\cap B_1=\{0\}

Let (x,y,z,w)AB1(x,y,z,w)\in A\cap B_1 be any arbitrary element then ,

(x,y,z,w)A(x,y,z ,w)\in A and (x,y,z,w)B1(x,y,z,w) \in B_1

Therefore, 2x+3y=z+w and x=y=z=02x+3y=z+w \ and \ x=y=z=0

    w=0\implies w=0

    (x,y,z,w)=(0,0,0,0)\implies(x,y,z,w)=(0,0,0,0)

Therefore , AB1={0}A\cap B_1 =\{0\}

Hence , AB1=R4A\bigoplus B_1=\R^4

Similarly , If AA is written in the form (2) then AB2=R4A\bigoplus B_2=\R^4






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS