Question #138017

Reduce the quadratic form Q=3x2+5y2+3z2-2xy-2yz+2xz to canonical form and hencevfind its nature, rank, index and signature.


1
Expert's answer
2020-10-13T17:54:50-0400

The given quadratic form is

3x2+5y2+3z22xy2yz+2xz3x^2+5y^2+3z^2-2xy-2yz+2xz

The matrix of the given quadratic form is

A=(311151113)A=\begin{pmatrix} 3 & -1 &1 \\ -1& 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}


We write , A=IAIA= IAI

i,e, (311151113)\begin {pmatrix} 3&-1&1 \\ -1&5&-1 \\ 1&-1&3 \end{pmatrix} =(100010001)=\begin{pmatrix} 1&0&0 \\ 0&1&0\\ 0&0&1 \end{pmatrix} A(100010001)A\begin{pmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{pmatrix}

Now we shall reduce AA to diagonal form by applying congruence operation on it . Performing R23R2+R1,R33R3R1;C2C2+13C1,R_2\rightarrow 3R_2+R_1,R_3\rightarrow 3R_3-R_1;C_2\rightarrow C_2+\frac{1}{3}C_1,


C3C313C1;R37R3+R2;C3C317C2C_3\rightarrow C_3-\frac{1}{3}C_1;R_3\rightarrow 7R_3+R_2;C_3\rightarrow C_3-\frac{1}{7}C_2

We get ,

(30001400054)\begin{pmatrix} 3&0&0\\ 0&14&0\\ 0&0&54 \end{pmatrix} == (1001306321)\begin{pmatrix} 1&0&0 \\ 1&3&0\\ -6&3&21 \end{pmatrix} A(1138210117001)A\begin{pmatrix} 1& \frac{1}{3} & \frac{-8}{21} \\ 0&1&\frac{-1}{7} \\ 0&0&1 \end{pmatrix}


Performing , R113R1,C113C1R_1\rightarrow \frac{1}{\sqrt{3}}R_1, C_1\rightarrow \frac{1}{\sqrt{3}}C_1 ;

R2114R1,C2114;R_2\rightarrow \frac{1}{\sqrt{14}}R_1,C_2\rightarrow \frac{1} {\sqrt{14}};

R3154R3,C3154C2R_3\rightarrow \frac{1}{\sqrt{54}}R_3,C_3\rightarrow \frac{1}{\sqrt{54}}C_2

We get ,

(100010001)\begin{pmatrix} 1&0&0 \\ 0&1&0\\ 0&0&1 \end{pmatrix} =(a00b3b06c3c21c)A=\begin{pmatrix} a&0&0\\ b&3b&0\\ -6c&3c&21c \end{pmatrix}A (ab38c210bc700c)\begin{pmatrix} a&\frac{b}{3}&\frac{-8c}{21} \\ 0&b&\frac{-c}{7} \\ 0&0&c \end{pmatrix}

Where a=13,b=114,c=154a=\frac{1}{\sqrt{3}},b=\frac{1}{\sqrt{14}},c=\frac{1}{\sqrt{54}}

Thus the linear transformation ,

X=PYX=PY where ,


P=(ab38c210bc700c)P=\begin{pmatrix} a&\frac{b}{3}&\frac{-8c}{21} \\ 0&b&\frac{-c}{7} \\ 0&0&c \end{pmatrix}


X=[x,y,z],Y=[y1,y2,y3]X=[x,y,z]',Y=[y_1,y_2,y_3]'

This transformation give quadratic form to the normal form

y12+y22+y32.............(1){y_1}^2+{y_2}^2+{y_3}^2.............(1)

The rank rr of the given quadratic form == The number of nonzero terms in its normal form (1)(1)

== 3.

The signature of the given quadratic form == the excess of the number of positive terms over the number of negative terms in its normal form=30=3=3-0=3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS