Question #139232
Reduce the quadratic form x1^2 + 2X2x3 to canonical form
1
Expert's answer
2020-10-22T17:58:48-0400

Given quadratic form is x12+2x2x3x_1^2+2x_2x_3


compare the given quadratic expression with standard quadratic form,


ax12+by12+cz12+2fyz+2gzx+2hxyax_1^2+by_1^2+cz_1^2+2fyz+2gzx+2hxy


we get,


a=1,b=0,c=0,f=1,g=0 and h=0


Transforming the quadratic equation into matrix form


So the required matrix is ,


A=[ahghbfgfc]A=\begin{bmatrix} a & h &g\\ h& b&f\\ g&f&c \end{bmatrix} , A=[100001010]A=\begin{bmatrix} 1 & 0 &0\\ 0& 0&1\\ 0&1&0 \end{bmatrix}


Using characterstics Equation (AλI)X=0(A-\lambda I)X=0


To calculate the values of λ\lambda

AλI=0|A-\lambda I|=0


100001010λ100010001=0\begin{vmatrix} 1 & 0 &0\\ 0& 0&1\\ 0&1&0 \end{vmatrix}-\lambda \begin{vmatrix} 1& 0 &0\\ 0& 1&0\\ 0&0&1 \end{vmatrix}=0


1λ000λ101λ\begin{vmatrix} 1-\lambda & 0 &0\\ 0& -\lambda&1\\ 0&1&-\lambda \end{vmatrix} =0


Using Factorization method


(1λ)(λ21)=0(1-\lambda)(\lambda^2-1)=0


so λ=1,1,1\lambda=1,-1,1 (these are the required eigen values)


S0 the required canonical form is


λ1x2+λ2y2+λ3z2=0\lambda_1x^2+\lambda_2y^2+\lambda_3z^2=0


x2y2+z2=0x^2-y^2+z^2=0

This is the required canonical form.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
12.06.21, 09:17

Dear MANCHU SAI VENKATA KIRAN, please use the panel for submitting a new question.


MANCHU SAI VENKATA KIRAN
18.05.21, 09:11

6x2+3y2+3z2-4xy-2yz+4xz reduce the quadratic from to canonical and find it's nature

LATEST TUTORIALS
APPROVED BY CLIENTS