Answer to Question #115308 in Linear Algebra for matome

Question #115308
Suppose A and B are n x n matrices with A invertible. Prove that det ABA^-1 = det B
1
Expert's answer
2020-05-11T18:02:40-0400

matrices are not commutative. that is AB is not equal to BA

det(BA)=det(B)det(A)det(BA)=det(A)det(B)det(BA)=det(AB)det(BA)=det(B)det(A)\\det(BA)=det(A)det(B)\\det(BA)=det(AB)

BB1=I    det(I)=1BB^{-1}=I \implies det(I)=1


hence to show det(ABA1)=det(B)det (ABA^{-1}) = det( B)

    det(ABA1)=det(A)det(B)det(A1)det(ABA1)=det(A)det(A1)det(B)det(ABA1)=(det(A)det(A1))det(B)det(ABA1)=(det(AA1))det(B)\implies det (ABA^{-1}) =det(A)det(B)det(A^{-1})\\det (ABA^{-1}) =det(A)det(A^{-1})det(B)\\ det (ABA^{-1})=(det(A)det(A^{-1}))det(B)\\det (ABA^{-1})=(det(AA^{-1}))det(B)


but AA1=IAA^{-1}=I

det(ABA1)=(det(I))det(B)det (ABA^{-1})=(det(I))det(B)\\ det(I)=1det(I)=1

hence:


det(ABA1)=det(B)det (ABA^{-1})=det(B)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment