matrices are not commutative. that is AB is not equal to BA
det(BA)=det(B)det(A)det(BA)=det(A)det(B)det(BA)=det(AB)
BB−1=I⟹det(I)=1
hence to show det(ABA−1)=det(B)
⟹det(ABA−1)=det(A)det(B)det(A−1)det(ABA−1)=det(A)det(A−1)det(B)det(ABA−1)=(det(A)det(A−1))det(B)det(ABA−1)=(det(AA−1))det(B)
but AA−1=I
det(ABA−1)=(det(I))det(B) det(I)=1
hence:
det(ABA−1)=det(B)
Comments
Leave a comment