matrices are not commutative. that is AB is not equal to BA
"det(BA)=det(B)det(A)\\\\det(BA)=det(A)det(B)\\\\det(BA)=det(AB)"
"BB^{-1}=I \\implies det(I)=1"
hence to show "det (ABA^{-1}) = det( B)"
"\\implies det (ABA^{-1}) =det(A)det(B)det(A^{-1})\\\\det (ABA^{-1}) =det(A)det(A^{-1})det(B)\\\\\ndet (ABA^{-1})=(det(A)det(A^{-1}))det(B)\\\\det (ABA^{-1})=(det(AA^{-1}))det(B)"
but "AA^{-1}=I"
"det (ABA^{-1})=(det(I))det(B)\\\\" "det(I)=1"
hence:
"det (ABA^{-1})=det(B)"
Comments
Leave a comment