i ) 2 v − 3 w − u = ( 6 , 2 , 2 ) − ( 0 , 6 , 3 ) − ( 4 , 2 , − 1 ) = ( 2 , − 6 , 0 ) i i ) w + v = ( 3 , 3 , 2 ) u ( w + v ) = ( 4 , 2 , − 1 ) ( 3 , 3 , 2 ) = 4 ∗ 3 + 3 ∗ 2 + 2 ∗ ( − 1 ) = 16 i v ) p r o j w u = u • w ∣ w ∣ ∗ w F i n d t h e d o t p r o d u c t o f u a n d w u • w = 4 • 0 + 2 • 2 + 1 • ( − 1 ) = 3 F i n d t h e l e n g t h o f w ∣ w ∣ = 0 2 + 2 2 + 1 2 = 5 p r o j w u = ( 0 , 6 5 5 , 3 5 5 ) v ) c o m p w u = u − u • w ∣ w ∣ w = ( 4 , 2 , − 1 ) − ( 0 , 6 5 5 , 3 5 5 ) = = ( 4 , 10 − 6 5 5 , − 5 − 3 5 5 ) i i i ) ∥ u ∗ w ∥ = ∥ i j k 4 2 − 1 0 2 1 ∥ = ∥ ∣ 2 − 1 2 1 ∣ , ∣ − 1 4 1 0 ∣ , ∣ 4 2 0 2 ∣ ∥ = ∥ ( 4 , − 4 , 8 ) ∥ = 4 2 + ( − 4 ) 2 + 8 2 = 4 6 \bold i) \\2v - 3w - u = (6, 2, 2) - (0, 6, 3) - (4, 2, -1) = (2, -6, 0)\\
\bold{ii)} \\
w + v = (3,3,2)
\\u(w + v) = (4,2,-1)(3,3,2) =4*3 +3*2 +2*(-1) = 16 \\
\bold{iv)} \\ proj_w u=\frac{u•w} {|w| }*w\\
Find\ the\ dot\ product\ of u \ and \ w\\
u•w=4•0+2•2+1•(-1)=3\\
Find\ the \ length \ of \ w\\
|w|= \sqrt{0^2+2^2+1^2}=\sqrt{5}\\
proj_wu=(0,\frac{6\sqrt{5}} {5},\frac{3\sqrt
{5}}{5})\\
\bold{v)}\\
comp_w u = u -\frac{u•w}{|w|}w=(4,2,-1) - (0,\frac{6\sqrt{5}}{5},\frac{3\sqrt{5}}{5})=\\
=(4, \frac{10-6\sqrt{5}}{5}, \frac{-5-3\sqrt{5}}{5})\\
\bold{iii)}
\begin{Vmatrix}
u*w
\end{Vmatrix}
= \begin{Vmatrix}
i & j & k\\
4 & 2 & -1\\
0 & 2 & 1
\end{Vmatrix}
= \begin{Vmatrix}
\begin{vmatrix}
2 & -1 \\
2 & 1\\
\end{vmatrix},&
\begin{vmatrix}
-1 & 4 \\
1 & 0
\end{vmatrix},
\begin{vmatrix}
4 & 2 \\
0 & 2
\end{vmatrix}\\
\end{Vmatrix}
=\begin{Vmatrix}
(4, -4 , 8)
\end{Vmatrix}
= \sqrt{4^2+(-4)^2+8^2} = 4\sqrt{6} i ) 2 v − 3 w − u = ( 6 , 2 , 2 ) − ( 0 , 6 , 3 ) − ( 4 , 2 , − 1 ) = ( 2 , − 6 , 0 ) ii ) w + v = ( 3 , 3 , 2 ) u ( w + v ) = ( 4 , 2 , − 1 ) ( 3 , 3 , 2 ) = 4 ∗ 3 + 3 ∗ 2 + 2 ∗ ( − 1 ) = 16 iv ) p ro j w u = ∣ w ∣ u • w ∗ w F in d t h e d o t p ro d u c t o f u an d w u • w = 4•0 + 2•2 + 1• ( − 1 ) = 3 F in d t h e l e n g t h o f w ∣ w ∣ = 0 2 + 2 2 + 1 2 = 5 p ro j w u = ( 0 , 5 6 5 , 5 3 5 ) v ) co m p w u = u − ∣ w ∣ u • w w = ( 4 , 2 , − 1 ) − ( 0 , 5 6 5 , 5 3 5 ) = = ( 4 , 5 10 − 6 5 , 5 − 5 − 3 5 ) iii ) ∥ ∥ u ∗ w ∥ ∥ = ∥ ∥ i 4 0 j 2 2 k − 1 1 ∥ ∥ = ∥ ∥ ∣ ∣ 2 2 − 1 1 ∣ ∣ , ∣ ∣ − 1 1 4 0 ∣ ∣ , ∣ ∣ 4 0 2 2 ∣ ∣ ∥ ∥ = ∥ ∥ ( 4 , − 4 , 8 ) ∥ ∥ = 4 2 + ( − 4 ) 2 + 8 2 = 4 6
Comments