We will verify all the axiom which qualify the set of all "3 \\times 3" upper triangular matrix forms a vector space over "\\mathbb{R}" ,
Let's define "M:=\\bigg\\{\n\\begin{pmatrix}\n a & b & c\\\\\n 0& d&e\\\\\n 0&0&f\n\\end{pmatrix} : \\forall a,b,c,d,e,f \\in \\mathbb{R} \\bigg\\}" . Now, let for any "A , B ,C \\in M" such that "A = \\begin{pmatrix}\n a_1 & b_1 & c_1\\\\\n 0& d_1&e_1\\\\\n 0&0&f_1\n\\end{pmatrix}" , "B=\\begin{pmatrix}\n a_2 & b_2& c_2\\\\\n 0& d_2&e_2\\\\\n 0&0&f_2\n\\end{pmatrix}" ,"C=\\begin{pmatrix}\n a_3 & b_3 & c_3\\\\\n 0& d_3&e_3\\\\\n 0&0&f_3\n\\end{pmatrix}" . We will prove the first four axioms i.e "M" is an Abelian group under addition.
"1. A+B =\\begin{pmatrix}\n a_1+a_2 & b_1+b_2 & c_1+c_2\\\\\n 0& d_1+d_2&e_1+e_2\\\\\n 0&0&f_1+f_2\n\\end{pmatrix}=B+A" "\\in M"
"2.(A+B)+C = \\begin{pmatrix}\n a_1+a_2+a_3 & b_1+b_2+ b_3& c_1+c_2+c_3\\\\\n 0& d_1+d_2+d_3&e_1+e_2+e_3\\\\\n 0&0&f_1+f_2+f_3\n\\end{pmatrix}=A+(B+C)"
"3.A+O =O+A=A" ,where "O" null matrix.
"4. A +(-A)=(-A)+A=O"
Now, we will show that multiplicative and distributive axioms holds true,
"5.O\\cdot A = O \\: (clearly, trivial\\: multiplication)"
"6. for, 1 \\in \\mathbb{R}, \n1\\cdot A =A"
"7. \\forall \\alpha, \\beta \\in \\mathbb{R} \\: and \\: A \\in M, \\: \\alpha(\\beta \\cdot A)=\\alpha \\begin{pmatrix}\n \\beta a_1 & \\beta b_1 & \\beta c_1\\\\\n 0& \\beta d_1&\\beta e_1\\\\\n 0&0&\\beta f_1\n\\end{pmatrix}"
"=\\begin{pmatrix}\n \\alpha \\beta a_1 & \\alpha\\beta b_1 & \\alpha\\beta c_1\\\\\n 0&\\alpha \\beta d_1&\\alpha\\beta e_1\\\\\n 0&0&\\alpha\\beta f_1\n\\end{pmatrix}=(\\alpha\\cdot \\beta)A"
"8." for any "\\alpha \\in \\mathbb{R} \\& A,B \\in M" ,
"\\alpha(A+B)= \\begin{pmatrix}\n \\alpha (a_1+a_2) & \\alpha( b_1+b_2 )& \\alpha( c_1+c_2)\\\\\n 0& \\alpha(d_1+d_2)& \\alpha(e_1+e_2)\\\\\n 0&0& \\alpha(f_1+f_2)\n\\end{pmatrix}" "=" "\\alpha A + \\alpha B"
"9." for any "\\alpha, \\beta \\in \\mathbb{R}" and "A \\in M" ,
"( \\alpha + \\beta)A =\\begin{pmatrix}\n ( \\alpha + \\beta)a_1 & ( \\alpha + \\beta)b_1 &( \\alpha + \\beta) c_1\\\\\n 0& ( \\alpha + \\beta)d_1&( \\alpha + \\beta)e_1\\\\\n 0&0&( \\alpha + \\beta)f_1\n\\end{pmatrix}" "=\\alpha A + \\beta A"
Therefore, the set "M" satisfy all the axioms of vector space,hence "M" is a vector space.
One basis of "M" is follows,
"B=" "\\bigg\\{" "\\begin{pmatrix}\n 1 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}" ,"\\begin{pmatrix}\n 0 & 1 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}" ,"\\begin{pmatrix}\n 0 & 0 & 1\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}" ,"\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 1&0\\\\\n 0&0&0\n\\end{pmatrix}" ,"\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&1\\\\\n 0&0&0\n\\end{pmatrix}" ,"\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&1\n\\end{pmatrix}" "\\bigg \\}"
proof:
Let, for any "a,b,c,d,e,f \\in \\mathbb{R}" , "a\\begin{pmatrix}\n 1 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+b\\begin{pmatrix}\n 0 & 1 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+c\\begin{pmatrix}\n 0 & 0 & 1\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+"
"d\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 1&0\\\\\n 0&0&0\n\\end{pmatrix}+e\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&1\\\\\n 0&0&0\n\\end{pmatrix}+f\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&1\n\\end{pmatrix}=\\begin{pmatrix}\n a & b & c\\\\\n 0& d&e\\\\\n 0&0&f\n\\end{pmatrix} \\in M" .
Hence, "B" spans "M" .
Now, we will check the linear independence of "B" .
let for any "a,b,c,d,e,f \\in \\mathbb{R}," "a\\begin{pmatrix}\n 1 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+b\\begin{pmatrix}\n 0 & 1 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+c\\begin{pmatrix}\n 0 & 0 & 1\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}+"
"d\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 1&0\\\\\n 0&0&0\n\\end{pmatrix}+e\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&1\\\\\n 0&0&0\n\\end{pmatrix}+f\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&1\n\\end{pmatrix}=\\begin{pmatrix}\n a & b & c\\\\\n 0& d&e\\\\\n 0&0&f\n\\end{pmatrix} =" "\\begin{pmatrix}\n 0 & 0 & 0\\\\\n 0& 0&0\\\\\n 0&0&0\n\\end{pmatrix}" ,
"\\implies a=b=c=d=e=f=0" , Hence, "B" satisfy the linear independence.Thus "B" is a basis of "M" .
Therefore, we are done.
Comments
Leave a comment