We will verify all the axiom which qualify the set of all 3 × 3 3 \times 3 3 × 3 upper triangular matrix forms a vector space over R \mathbb{R} R ,
Let's define M : = { ( a b c 0 d e 0 0 f ) : ∀ a , b , c , d , e , f ∈ R } M:=\bigg\{
\begin{pmatrix}
a & b & c\\
0& d&e\\
0&0&f
\end{pmatrix} : \forall a,b,c,d,e,f \in \mathbb{R} \bigg\} M := { ⎝ ⎛ a 0 0 b d 0 c e f ⎠ ⎞ : ∀ a , b , c , d , e , f ∈ R } . Now, let for any A , B , C ∈ M A , B ,C \in M A , B , C ∈ M such that A = ( a 1 b 1 c 1 0 d 1 e 1 0 0 f 1 ) A = \begin{pmatrix}
a_1 & b_1 & c_1\\
0& d_1&e_1\\
0&0&f_1
\end{pmatrix} A = ⎝ ⎛ a 1 0 0 b 1 d 1 0 c 1 e 1 f 1 ⎠ ⎞ , B = ( a 2 b 2 c 2 0 d 2 e 2 0 0 f 2 ) B=\begin{pmatrix}
a_2 & b_2& c_2\\
0& d_2&e_2\\
0&0&f_2
\end{pmatrix} B = ⎝ ⎛ a 2 0 0 b 2 d 2 0 c 2 e 2 f 2 ⎠ ⎞ ,C = ( a 3 b 3 c 3 0 d 3 e 3 0 0 f 3 ) C=\begin{pmatrix}
a_3 & b_3 & c_3\\
0& d_3&e_3\\
0&0&f_3
\end{pmatrix} C = ⎝ ⎛ a 3 0 0 b 3 d 3 0 c 3 e 3 f 3 ⎠ ⎞ . We will prove the first four axioms i.e M M M is an Abelian group under addition.
1. A + B = ( a 1 + a 2 b 1 + b 2 c 1 + c 2 0 d 1 + d 2 e 1 + e 2 0 0 f 1 + f 2 ) = B + A 1. A+B =\begin{pmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2\\
0& d_1+d_2&e_1+e_2\\
0&0&f_1+f_2
\end{pmatrix}=B+A 1. A + B = ⎝ ⎛ a 1 + a 2 0 0 b 1 + b 2 d 1 + d 2 0 c 1 + c 2 e 1 + e 2 f 1 + f 2 ⎠ ⎞ = B + A ∈ M \in M ∈ M
2. ( A + B ) + C = ( a 1 + a 2 + a 3 b 1 + b 2 + b 3 c 1 + c 2 + c 3 0 d 1 + d 2 + d 3 e 1 + e 2 + e 3 0 0 f 1 + f 2 + f 3 ) = A + ( B + C ) 2.(A+B)+C = \begin{pmatrix}
a_1+a_2+a_3 & b_1+b_2+ b_3& c_1+c_2+c_3\\
0& d_1+d_2+d_3&e_1+e_2+e_3\\
0&0&f_1+f_2+f_3
\end{pmatrix}=A+(B+C) 2. ( A + B ) + C = ⎝ ⎛ a 1 + a 2 + a 3 0 0 b 1 + b 2 + b 3 d 1 + d 2 + d 3 0 c 1 + c 2 + c 3 e 1 + e 2 + e 3 f 1 + f 2 + f 3 ⎠ ⎞ = A + ( B + C )
3. A + O = O + A = A 3.A+O =O+A=A 3. A + O = O + A = A ,where O O O null matrix.
4. A + ( − A ) = ( − A ) + A = O 4. A +(-A)=(-A)+A=O 4. A + ( − A ) = ( − A ) + A = O
Now, we will show that multiplicative and distributive axioms holds true,
5. O ⋅ A = O ( c l e a r l y , t r i v i a l m u l t i p l i c a t i o n ) 5.O\cdot A = O \: (clearly, trivial\: multiplication) 5. O ⋅ A = O ( c l e a r l y , t r i v ia l m u lt i pl i c a t i o n )
6. f o r , 1 ∈ R , 1 ⋅ A = A 6. for, 1 \in \mathbb{R},
1\cdot A =A 6. f or , 1 ∈ R , 1 ⋅ A = A
7. ∀ α , β ∈ R a n d A ∈ M , α ( β ⋅ A ) = α ( β a 1 β b 1 β c 1 0 β d 1 β e 1 0 0 β f 1 ) 7. \forall \alpha, \beta \in \mathbb{R} \: and \: A \in M, \: \alpha(\beta \cdot A)=\alpha \begin{pmatrix}
\beta a_1 & \beta b_1 & \beta c_1\\
0& \beta d_1&\beta e_1\\
0&0&\beta f_1
\end{pmatrix} 7.∀ α , β ∈ R an d A ∈ M , α ( β ⋅ A ) = α ⎝ ⎛ β a 1 0 0 β b 1 β d 1 0 β c 1 β e 1 β f 1 ⎠ ⎞
= ( α β a 1 α β b 1 α β c 1 0 α β d 1 α β e 1 0 0 α β f 1 ) = ( α ⋅ β ) A =\begin{pmatrix}
\alpha \beta a_1 & \alpha\beta b_1 & \alpha\beta c_1\\
0&\alpha \beta d_1&\alpha\beta e_1\\
0&0&\alpha\beta f_1
\end{pmatrix}=(\alpha\cdot \beta)A = ⎝ ⎛ α β a 1 0 0 α β b 1 α β d 1 0 α β c 1 α β e 1 α β f 1 ⎠ ⎞ = ( α ⋅ β ) A
8. 8. 8. for any α ∈ R & A , B ∈ M \alpha \in \mathbb{R} \& A,B \in M α ∈ R & A , B ∈ M ,
α ( A + B ) = ( α ( a 1 + a 2 ) α ( b 1 + b 2 ) α ( c 1 + c 2 ) 0 α ( d 1 + d 2 ) α ( e 1 + e 2 ) 0 0 α ( f 1 + f 2 ) ) \alpha(A+B)= \begin{pmatrix}
\alpha (a_1+a_2) & \alpha( b_1+b_2 )& \alpha( c_1+c_2)\\
0& \alpha(d_1+d_2)& \alpha(e_1+e_2)\\
0&0& \alpha(f_1+f_2)
\end{pmatrix} α ( A + B ) = ⎝ ⎛ α ( a 1 + a 2 ) 0 0 α ( b 1 + b 2 ) α ( d 1 + d 2 ) 0 α ( c 1 + c 2 ) α ( e 1 + e 2 ) α ( f 1 + f 2 ) ⎠ ⎞ = = = α A + α B \alpha A + \alpha B α A + α B
9. 9. 9. for any α , β ∈ R \alpha, \beta \in \mathbb{R} α , β ∈ R and A ∈ M A \in M A ∈ M ,
( α + β ) A = ( ( α + β ) a 1 ( α + β ) b 1 ( α + β ) c 1 0 ( α + β ) d 1 ( α + β ) e 1 0 0 ( α + β ) f 1 ) ( \alpha + \beta)A =\begin{pmatrix}
( \alpha + \beta)a_1 & ( \alpha + \beta)b_1 &( \alpha + \beta) c_1\\
0& ( \alpha + \beta)d_1&( \alpha + \beta)e_1\\
0&0&( \alpha + \beta)f_1
\end{pmatrix} ( α + β ) A = ⎝ ⎛ ( α + β ) a 1 0 0 ( α + β ) b 1 ( α + β ) d 1 0 ( α + β ) c 1 ( α + β ) e 1 ( α + β ) f 1 ⎠ ⎞ = α A + β A =\alpha A + \beta A = α A + β A
Therefore, the set M M M satisfy all the axioms of vector space,hence M M M is a vector space.
One basis of M M M is follows,
B = B= B = { \bigg\{ { ( 1 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 0 ⎠ ⎞ ,( 0 1 0 0 0 0 0 0 0 ) \begin{pmatrix}
0 & 1 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 1 0 0 0 0 0 ⎠ ⎞ ,( 0 0 1 0 0 0 0 0 0 ) \begin{pmatrix}
0 & 0 & 1\\
0& 0&0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 0 0 0 1 0 0 ⎠ ⎞ ,( 0 0 0 0 1 0 0 0 0 ) \begin{pmatrix}
0 & 0 & 0\\
0& 1&0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 0 1 0 0 0 0 ⎠ ⎞ ,( 0 0 0 0 0 1 0 0 0 ) \begin{pmatrix}
0 & 0 & 0\\
0& 0&1\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 0 0 0 0 1 0 ⎠ ⎞ ,( 0 0 0 0 0 0 0 0 1 ) \begin{pmatrix}
0 & 0 & 0\\
0& 0&0\\
0&0&1
\end{pmatrix} ⎝ ⎛ 0 0 0 0 0 0 0 0 1 ⎠ ⎞ } \bigg \} }
proof:
Let, for any a , b , c , d , e , f ∈ R a,b,c,d,e,f \in \mathbb{R} a , b , c , d , e , f ∈ R , a ( 1 0 0 0 0 0 0 0 0 ) + b ( 0 1 0 0 0 0 0 0 0 ) + c ( 0 0 1 0 0 0 0 0 0 ) + a\begin{pmatrix}
1 & 0 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix}+b\begin{pmatrix}
0 & 1 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix}+c\begin{pmatrix}
0 & 0 & 1\\
0& 0&0\\
0&0&0
\end{pmatrix}+ a ⎝ ⎛ 1 0 0 0 0 0 0 0 0 ⎠ ⎞ + b ⎝ ⎛ 0 0 0 1 0 0 0 0 0 ⎠ ⎞ + c ⎝ ⎛ 0 0 0 0 0 0 1 0 0 ⎠ ⎞ +
d ( 0 0 0 0 1 0 0 0 0 ) + e ( 0 0 0 0 0 1 0 0 0 ) + f ( 0 0 0 0 0 0 0 0 1 ) = ( a b c 0 d e 0 0 f ) ∈ M d\begin{pmatrix}
0 & 0 & 0\\
0& 1&0\\
0&0&0
\end{pmatrix}+e\begin{pmatrix}
0 & 0 & 0\\
0& 0&1\\
0&0&0
\end{pmatrix}+f\begin{pmatrix}
0 & 0 & 0\\
0& 0&0\\
0&0&1
\end{pmatrix}=\begin{pmatrix}
a & b & c\\
0& d&e\\
0&0&f
\end{pmatrix} \in M d ⎝ ⎛ 0 0 0 0 1 0 0 0 0 ⎠ ⎞ + e ⎝ ⎛ 0 0 0 0 0 0 0 1 0 ⎠ ⎞ + f ⎝ ⎛ 0 0 0 0 0 0 0 0 1 ⎠ ⎞ = ⎝ ⎛ a 0 0 b d 0 c e f ⎠ ⎞ ∈ M .
Hence, B B B spans M M M .
Now, we will check the linear independence of B B B .
let for any a , b , c , d , e , f ∈ R , a,b,c,d,e,f \in \mathbb{R}, a , b , c , d , e , f ∈ R , a ( 1 0 0 0 0 0 0 0 0 ) + b ( 0 1 0 0 0 0 0 0 0 ) + c ( 0 0 1 0 0 0 0 0 0 ) + a\begin{pmatrix}
1 & 0 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix}+b\begin{pmatrix}
0 & 1 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix}+c\begin{pmatrix}
0 & 0 & 1\\
0& 0&0\\
0&0&0
\end{pmatrix}+ a ⎝ ⎛ 1 0 0 0 0 0 0 0 0 ⎠ ⎞ + b ⎝ ⎛ 0 0 0 1 0 0 0 0 0 ⎠ ⎞ + c ⎝ ⎛ 0 0 0 0 0 0 1 0 0 ⎠ ⎞ +
d ( 0 0 0 0 1 0 0 0 0 ) + e ( 0 0 0 0 0 1 0 0 0 ) + f ( 0 0 0 0 0 0 0 0 1 ) = ( a b c 0 d e 0 0 f ) = d\begin{pmatrix}
0 & 0 & 0\\
0& 1&0\\
0&0&0
\end{pmatrix}+e\begin{pmatrix}
0 & 0 & 0\\
0& 0&1\\
0&0&0
\end{pmatrix}+f\begin{pmatrix}
0 & 0 & 0\\
0& 0&0\\
0&0&1
\end{pmatrix}=\begin{pmatrix}
a & b & c\\
0& d&e\\
0&0&f
\end{pmatrix} = d ⎝ ⎛ 0 0 0 0 1 0 0 0 0 ⎠ ⎞ + e ⎝ ⎛ 0 0 0 0 0 0 0 1 0 ⎠ ⎞ + f ⎝ ⎛ 0 0 0 0 0 0 0 0 1 ⎠ ⎞ = ⎝ ⎛ a 0 0 b d 0 c e f ⎠ ⎞ = ( 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
0 & 0 & 0\\
0& 0&0\\
0&0&0
\end{pmatrix} ⎝ ⎛ 0 0 0 0 0 0 0 0 0 ⎠ ⎞ ,
⟹ a = b = c = d = e = f = 0 \implies a=b=c=d=e=f=0 ⟹ a = b = c = d = e = f = 0 , Hence, B B B satisfy the linear independence.Thus B B B is a basis of M M M .
Therefore, we are done.
Comments