Question #115063
how that the set of all 3 x 3 upper
triangular matrices with entries from R is a
vector space over R under usual addition
and scalar multiplication of matrices. Find a
basis of this vector space.
1
Expert's answer
2020-05-11T11:25:56-0400

We will verify all the axiom which qualify the set of all 3×33 \times 3 upper triangular matrix forms a vector space over R\mathbb{R} ,

Let's define M:={(abc0de00f):a,b,c,d,e,fR}M:=\bigg\{ \begin{pmatrix} a & b & c\\ 0& d&e\\ 0&0&f \end{pmatrix} : \forall a,b,c,d,e,f \in \mathbb{R} \bigg\} . Now, let for any A,B,CMA , B ,C \in M such that A=(a1b1c10d1e100f1)A = \begin{pmatrix} a_1 & b_1 & c_1\\ 0& d_1&e_1\\ 0&0&f_1 \end{pmatrix} , B=(a2b2c20d2e200f2)B=\begin{pmatrix} a_2 & b_2& c_2\\ 0& d_2&e_2\\ 0&0&f_2 \end{pmatrix} ,C=(a3b3c30d3e300f3)C=\begin{pmatrix} a_3 & b_3 & c_3\\ 0& d_3&e_3\\ 0&0&f_3 \end{pmatrix} . We will prove the first four axioms i.e MM is an Abelian group under addition.



1.A+B=(a1+a2b1+b2c1+c20d1+d2e1+e200f1+f2)=B+A1. A+B =\begin{pmatrix} a_1+a_2 & b_1+b_2 & c_1+c_2\\ 0& d_1+d_2&e_1+e_2\\ 0&0&f_1+f_2 \end{pmatrix}=B+A M\in M

2.(A+B)+C=(a1+a2+a3b1+b2+b3c1+c2+c30d1+d2+d3e1+e2+e300f1+f2+f3)=A+(B+C)2.(A+B)+C = \begin{pmatrix} a_1+a_2+a_3 & b_1+b_2+ b_3& c_1+c_2+c_3\\ 0& d_1+d_2+d_3&e_1+e_2+e_3\\ 0&0&f_1+f_2+f_3 \end{pmatrix}=A+(B+C)

3.A+O=O+A=A3.A+O =O+A=A ,where OO null matrix.

4.A+(A)=(A)+A=O4. A +(-A)=(-A)+A=O


Now, we will show that multiplicative and distributive axioms holds true,



5.OA=O(clearly,trivialmultiplication)5.O\cdot A = O \: (clearly, trivial\: multiplication)

6.for,1R,1A=A6. for, 1 \in \mathbb{R}, 1\cdot A =A

7.α,βRandAM,α(βA)=α(βa1βb1βc10βd1βe100βf1)7. \forall \alpha, \beta \in \mathbb{R} \: and \: A \in M, \: \alpha(\beta \cdot A)=\alpha \begin{pmatrix} \beta a_1 & \beta b_1 & \beta c_1\\ 0& \beta d_1&\beta e_1\\ 0&0&\beta f_1 \end{pmatrix}

=(αβa1αβb1αβc10αβd1αβe100αβf1)=(αβ)A=\begin{pmatrix} \alpha \beta a_1 & \alpha\beta b_1 & \alpha\beta c_1\\ 0&\alpha \beta d_1&\alpha\beta e_1\\ 0&0&\alpha\beta f_1 \end{pmatrix}=(\alpha\cdot \beta)A

8.8. for any αR&A,BM\alpha \in \mathbb{R} \& A,B \in M ,

α(A+B)=(α(a1+a2)α(b1+b2)α(c1+c2)0α(d1+d2)α(e1+e2)00α(f1+f2))\alpha(A+B)= \begin{pmatrix} \alpha (a_1+a_2) & \alpha( b_1+b_2 )& \alpha( c_1+c_2)\\ 0& \alpha(d_1+d_2)& \alpha(e_1+e_2)\\ 0&0& \alpha(f_1+f_2) \end{pmatrix} ==  αA+αB\alpha A + \alpha B


9.9. for any α,βR\alpha, \beta \in \mathbb{R} and AMA \in M ,

(α+β)A=((α+β)a1(α+β)b1(α+β)c10(α+β)d1(α+β)e100(α+β)f1)( \alpha + \beta)A =\begin{pmatrix} ( \alpha + \beta)a_1 & ( \alpha + \beta)b_1 &( \alpha + \beta) c_1\\ 0& ( \alpha + \beta)d_1&( \alpha + \beta)e_1\\ 0&0&( \alpha + \beta)f_1 \end{pmatrix} =αA+βA=\alpha A + \beta A


Therefore, the set MM satisfy all the axioms of vector space,hence MM is a vector space.


One basis of MM is follows,


B=B= {\bigg\{ (100000000)\begin{pmatrix} 1 & 0 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix} ,(010000000)\begin{pmatrix} 0 & 1 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix} ,(001000000)\begin{pmatrix} 0 & 0 & 1\\ 0& 0&0\\ 0&0&0 \end{pmatrix} ,(000010000)\begin{pmatrix} 0 & 0 & 0\\ 0& 1&0\\ 0&0&0 \end{pmatrix} ,(000001000)\begin{pmatrix} 0 & 0 & 0\\ 0& 0&1\\ 0&0&0 \end{pmatrix} ,(000000001)\begin{pmatrix} 0 & 0 & 0\\ 0& 0&0\\ 0&0&1 \end{pmatrix} }\bigg \}


proof:

Let, for any a,b,c,d,e,fRa,b,c,d,e,f \in \mathbb{R} , a(100000000)+b(010000000)+c(001000000)+a\begin{pmatrix} 1 & 0 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+b\begin{pmatrix} 0 & 1 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+c\begin{pmatrix} 0 & 0 & 1\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+

d(000010000)+e(000001000)+f(000000001)=(abc0de00f)Md\begin{pmatrix} 0 & 0 & 0\\ 0& 1&0\\ 0&0&0 \end{pmatrix}+e\begin{pmatrix} 0 & 0 & 0\\ 0& 0&1\\ 0&0&0 \end{pmatrix}+f\begin{pmatrix} 0 & 0 & 0\\ 0& 0&0\\ 0&0&1 \end{pmatrix}=\begin{pmatrix} a & b & c\\ 0& d&e\\ 0&0&f \end{pmatrix} \in M .

Hence, BB spans MM .


Now, we will check the linear independence of BB .


let for any a,b,c,d,e,fR,a,b,c,d,e,f \in \mathbb{R}, a(100000000)+b(010000000)+c(001000000)+a\begin{pmatrix} 1 & 0 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+b\begin{pmatrix} 0 & 1 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+c\begin{pmatrix} 0 & 0 & 1\\ 0& 0&0\\ 0&0&0 \end{pmatrix}+

d(000010000)+e(000001000)+f(000000001)=(abc0de00f)=d\begin{pmatrix} 0 & 0 & 0\\ 0& 1&0\\ 0&0&0 \end{pmatrix}+e\begin{pmatrix} 0 & 0 & 0\\ 0& 0&1\\ 0&0&0 \end{pmatrix}+f\begin{pmatrix} 0 & 0 & 0\\ 0& 0&0\\ 0&0&1 \end{pmatrix}=\begin{pmatrix} a & b & c\\ 0& d&e\\ 0&0&f \end{pmatrix} = (000000000)\begin{pmatrix} 0 & 0 & 0\\ 0& 0&0\\ 0&0&0 \end{pmatrix} ,

    a=b=c=d=e=f=0\implies a=b=c=d=e=f=0 , Hence, BB satisfy the linear independence.Thus BB is a basis of MM .

Therefore, we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS