Question #114858
Solve the following system of linear equations by using the inverse matrix
method: (10)
x + y + z = 4
-2x - y + 3z = 1
y + 5z = 9
1
Expert's answer
2020-05-12T16:15:35-0400

Given system can be written in matrix form as AX=bAX = b

where A=[111213015]A = \begin{bmatrix} 1 & 1 & 1\\ -2 & -1 & 3 \\ 0 & 1 & 5 \end{bmatrix}, X=[xyz],b=[419]X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, b = \begin{bmatrix} 4 \\ 1 \\ 9 \end{bmatrix}.

Now, By expending with the first row A=1(53)1(10)+1(2)=8+102=0|A| = 1(-5-3)-1(-10)+1(-2) = -8+10-2 = 0

So, ρ(A)<3.\rho(A)<3.

Now, 1121=1+2=10\begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} = -1+2 = 1 \neq 0 .

So, ρ(A)=2\rho(A) = 2 and number of variable to be let =3ρ(A)=1.= 3-\rho(A) = 1.

We let z=k.z = k.

So, from given first two equations:

x+y=4k2xy=13kx+y=4-k \\ -2x-y = 1-3k

Which can be written as [1121][xy]=[4k13k]\begin{bmatrix} 1 & 1\\ -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4-k\\ 1-3k \end{bmatrix}

i.e. A1X1=b1A_1 X_1 = b_1 and A1=10|A_1| = 1 \neq 0 .

So, Inverse method can apply in A1X1=b1A_1 X_1 = b_1,

    X1=A11b1\implies X_1 = A_1^{-1} b_1

    [xy]=[1121][4k13k]\implies \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & -1\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4-k\\ 1-3k \end{bmatrix} =[4k55k+9]= \begin{bmatrix} 4k-5\\ -5k+9 \end{bmatrix}.

So, Solution of given system of equation is

x=4k5,y=5k+9,z=kx =4k-5, y = -5k+9, z= k where kk is any real number.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS