Given system can be written in matrix form as A X = b AX = b A X = b
where A = [ 1 1 1 − 2 − 1 3 0 1 5 ] A = \begin{bmatrix}
1 & 1 & 1\\
-2 & -1 & 3 \\
0 & 1 & 5
\end{bmatrix} A = ⎣ ⎡ 1 − 2 0 1 − 1 1 1 3 5 ⎦ ⎤ , X = [ x y z ] , b = [ 4 1 9 ] X = \begin{bmatrix}
x \\
y \\
z
\end{bmatrix},
b = \begin{bmatrix}
4 \\
1 \\
9
\end{bmatrix} X = ⎣ ⎡ x y z ⎦ ⎤ , b = ⎣ ⎡ 4 1 9 ⎦ ⎤ .
Now, By expending with the first row ∣ A ∣ = 1 ( − 5 − 3 ) − 1 ( − 10 ) + 1 ( − 2 ) = − 8 + 10 − 2 = 0 |A| = 1(-5-3)-1(-10)+1(-2) = -8+10-2 = 0 ∣ A ∣ = 1 ( − 5 − 3 ) − 1 ( − 10 ) + 1 ( − 2 ) = − 8 + 10 − 2 = 0
So, ρ ( A ) < 3. \rho(A)<3. ρ ( A ) < 3.
Now, ∣ 1 1 − 2 − 1 ∣ = − 1 + 2 = 1 ≠ 0 \begin{vmatrix}
1 & 1 \\
-2 & -1
\end{vmatrix} = -1+2 = 1 \neq 0 ∣ ∣ 1 − 2 1 − 1 ∣ ∣ = − 1 + 2 = 1 = 0 .
So, ρ ( A ) = 2 \rho(A) = 2 ρ ( A ) = 2 and number of variable to be let = 3 − ρ ( A ) = 1. = 3-\rho(A) = 1. = 3 − ρ ( A ) = 1.
We let z = k . z = k. z = k .
So, from given first two equations:
x + y = 4 − k − 2 x − y = 1 − 3 k x+y=4-k \\
-2x-y = 1-3k x + y = 4 − k − 2 x − y = 1 − 3 k
Which can be written as [ 1 1 − 2 − 1 ] [ x y ] = [ 4 − k 1 − 3 k ] \begin{bmatrix}
1 & 1\\
-2 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
4-k\\
1-3k
\end{bmatrix} [ 1 − 2 1 − 1 ] [ x y ] = [ 4 − k 1 − 3 k ]
i.e. A 1 X 1 = b 1 A_1 X_1 = b_1 A 1 X 1 = b 1 and ∣ A 1 ∣ = 1 ≠ 0 |A_1| = 1 \neq 0 ∣ A 1 ∣ = 1 = 0 .
So, Inverse method can apply in A 1 X 1 = b 1 A_1 X_1 = b_1 A 1 X 1 = b 1 ,
⟹ X 1 = A 1 − 1 b 1 \implies X_1 = A_1^{-1} b_1 ⟹ X 1 = A 1 − 1 b 1
⟹ [ x y ] = [ − 1 − 1 2 1 ] [ 4 − k 1 − 3 k ] \implies
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
-1 & -1\\
2 & 1
\end{bmatrix}
\begin{bmatrix}
4-k\\
1-3k
\end{bmatrix} ⟹ [ x y ] = [ − 1 2 − 1 1 ] [ 4 − k 1 − 3 k ] = [ 4 k − 5 − 5 k + 9 ] = \begin{bmatrix}
4k-5\\
-5k+9
\end{bmatrix} = [ 4 k − 5 − 5 k + 9 ] .
So, Solution of given system of equation is
x = 4 k − 5 , y = − 5 k + 9 , z = k x =4k-5, y = -5k+9, z= k x = 4 k − 5 , y = − 5 k + 9 , z = k where k k k is any real number.
Comments