Question #114718
Find
a)-A raised to -1+3B raised to T
b)B raised to -1+(A raised to T+A raised to -1)
1
Expert's answer
2020-05-11T12:29:43-0400


Find:

a)-A raised to -1+3B raised to T


letA=[abcd]B=[ijkl]let\\A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\\B=\begin{bmatrix} i & j\\ k & l \end{bmatrix}

then

A=[abcd]    A1=1adcb[dbca]-A=\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \implies -A^{-1}=\frac{1}{ad-cb}\begin{bmatrix} -d& b \\ c &- a \end{bmatrix}


BT=[ikjl]    3BT=[3i3k3j3l]B^{T}=\begin{bmatrix} i & k\\ j& l \end{bmatrix} \implies 3B^{T}=\begin{bmatrix} 3 i & 3k\\ 3 j& 3l \end{bmatrix}


A1+3BT=1adcb[dbca]+[3i3k3j3l]-A^{-1}+3B^T=\frac{1}{ad-cb}\begin{bmatrix} -d& b \\ c &- a \end{bmatrix}+\begin{bmatrix} 3 i & 3k\\ 3 j& 3l \end{bmatrix}


A1+3BT=[3i(adcd)dadcd3k(adcd)+badcd3j(adcd)+cadcd3l(adcd)aadcd]-A^{-1}+3B^T=\begin{bmatrix} \frac{3i(ad-cd)-d}{ad-cd} & \frac{3k(ad-cd)+b}{ad-cd}\\ \frac{3j(ad-cd)+c}{ad-cd} & \frac{3l(ad-cd)-a}{ad-cd} \end{bmatrix}


b)B raised to -1+(A raised to T+A raised to -1)


B1=1ilkj[ljki];iAT=[acbd];A1=1adcb[dbca]B^{-1}=\frac{1}{il-kj}\begin{bmatrix} l&- j\\ - k &i \end{bmatrix};\phantom{i}A^{T}=\begin{bmatrix} a& c\\ b &d \end{bmatrix};A^{-1}=\frac{1}{ad-cb}\begin{bmatrix} d& -b \\ -c &a \end{bmatrix}


B1+AT+A1=[lilkj+a+dadcbjkjil+c+bcbadkkjil+b+ccbadiilkj+d+aadcb]B^{-1}+A^T+A^{-1}=\begin{bmatrix} \frac{l}{il-kj}+a+\frac{d}{ad-cb}& \frac{j}{kj-il}+c+\frac{b}{cb-ad}\\ \frac{k}{kj-il}+b+\frac{c}{cb-ad} & \frac{i}{il-kj}+d+\frac{a}{ad-cb} \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS