Find:
a)-A raised to -1+3B raised to T
"let\\\\A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}\\\\B=\\begin{bmatrix}\n i & j\\\\\n k & l\n\\end{bmatrix}"
then
"-A=\\begin{bmatrix}\n -a & -b \\\\\n -c & -d\n\\end{bmatrix} \\implies -A^{-1}=\\frac{1}{ad-cb}\\begin{bmatrix}\n -d& b \\\\\n c &- a\n\\end{bmatrix}"
"B^{T}=\\begin{bmatrix}\n i & k\\\\\n j& l\n\\end{bmatrix} \\implies 3B^{T}=\\begin{bmatrix}\n 3 i & 3k\\\\\n 3 j& 3l\n\\end{bmatrix}"
"-A^{-1}+3B^T=\\frac{1}{ad-cb}\\begin{bmatrix}\n -d& b \\\\\n c &- a\n\\end{bmatrix}+\\begin{bmatrix}\n 3 i & 3k\\\\\n 3 j& 3l\n\\end{bmatrix}"
"-A^{-1}+3B^T=\\begin{bmatrix}\n \\frac{3i(ad-cd)-d}{ad-cd} & \\frac{3k(ad-cd)+b}{ad-cd}\\\\\n \\frac{3j(ad-cd)+c}{ad-cd} & \\frac{3l(ad-cd)-a}{ad-cd}\n\\end{bmatrix}"
b)B raised to -1+(A raised to T+A raised to -1)
"B^{-1}=\\frac{1}{il-kj}\\begin{bmatrix}\n l&- j\\\\\n - k &i\n\\end{bmatrix};\\phantom{i}A^{T}=\\begin{bmatrix}\n a& c\\\\\n b &d\n\\end{bmatrix};A^{-1}=\\frac{1}{ad-cb}\\begin{bmatrix}\n d& -b \\\\\n -c &a\n\\end{bmatrix}"
"B^{-1}+A^T+A^{-1}=\\begin{bmatrix}\n \\frac{l}{il-kj}+a+\\frac{d}{ad-cb}& \\frac{j}{kj-il}+c+\\frac{b}{cb-ad}\\\\\n \\frac{k}{kj-il}+b+\\frac{c}{cb-ad} & \\frac{i}{il-kj}+d+\\frac{a}{ad-cb}\n\\end{bmatrix}"
Comments
Leave a comment