"det(A)=\\sum_{j=1}^n (-1)^{i+j} a_{ij} M_j^i" "M_j^i - additional \\space minor \\space to \\space element \\space a_{ij}"
"det(A)=\\begin{vmatrix}\n a_{11} & a_{12} & a_{13} \\\\\n a_{21} & a_{22} & a_{23} \\\\\n a_{31} & a_{32} & a_{33}\n\\end{vmatrix}\n=(-1)^{2+1}a_{21}\\begin{vmatrix}\n a_{12} & a_{13} \\\\\n a_{32} & a_{33}\n\\end{vmatrix}+"
"(-1)^{2+2}a_{22}\\begin{vmatrix}\n a_{11} & a_{13} \\\\\n a_{31} & a_{33}\n\\end{vmatrix}+(-1)^{2+3}a_{23}\\begin{vmatrix}\n a_{11} & a_{12} \\\\\n a_{31} & a_{32}\n\\end{vmatrix}="
"-a_{21}(a_{12}a_{33}-a_{13}a_{32})+a_{22}(a_{11}a_{33}-a_{13}a_{31})-a_{23}(a_{11}a_{32}-a_{12}a_{31})="
"-a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32}+a_{11}a_{22}a_{33}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}"
Comments
Leave a comment