d e t ( A ) = ∑ j = 1 n ( − 1 ) i + j a i j M j i det(A)=\sum_{j=1}^n (-1)^{i+j} a_{ij} M_j^i d e t ( A ) = j = 1 ∑ n ( − 1 ) i + j a ij M j i M j i − a d d i t i o n a l m i n o r t o e l e m e n t a i j M_j^i - additional \space minor \space to \space element \space a_{ij} M j i − a dd i t i o na l min or t o e l e m e n t a ij
d e t ( A ) = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ( − 1 ) 2 + 1 a 21 ∣ a 12 a 13 a 32 a 33 ∣ + det(A)=\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{vmatrix}
=(-1)^{2+1}a_{21}\begin{vmatrix}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{vmatrix}+ d e t ( A ) = ∣ ∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ ∣ = ( − 1 ) 2 + 1 a 21 ∣ ∣ a 12 a 32 a 13 a 33 ∣ ∣ +
( − 1 ) 2 + 2 a 22 ∣ a 11 a 13 a 31 a 33 ∣ + ( − 1 ) 2 + 3 a 23 ∣ a 11 a 12 a 31 a 32 ∣ = (-1)^{2+2}a_{22}\begin{vmatrix}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{vmatrix}+(-1)^{2+3}a_{23}\begin{vmatrix}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{vmatrix}= ( − 1 ) 2 + 2 a 22 ∣ ∣ a 11 a 31 a 13 a 33 ∣ ∣ + ( − 1 ) 2 + 3 a 23 ∣ ∣ a 11 a 31 a 12 a 32 ∣ ∣ =
− a 21 ( a 12 a 33 − a 13 a 32 ) + a 22 ( a 11 a 33 − a 13 a 31 ) − a 23 ( a 11 a 32 − a 12 a 31 ) = -a_{21}(a_{12}a_{33}-a_{13}a_{32})+a_{22}(a_{11}a_{33}-a_{13}a_{31})-a_{23}(a_{11}a_{32}-a_{12}a_{31})= − a 21 ( a 12 a 33 − a 13 a 32 ) + a 22 ( a 11 a 33 − a 13 a 31 ) − a 23 ( a 11 a 32 − a 12 a 31 ) =
− a 12 a 21 a 33 + a 13 a 21 a 32 + a 11 a 22 a 33 − a 13 a 22 a 31 − a 11 a 23 a 32 + a 12 a 23 a 31 -a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32}+a_{11}a_{22}a_{33}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31} − a 12 a 21 a 33 + a 13 a 21 a 32 + a 11 a 22 a 33 − a 13 a 22 a 31 − a 11 a 23 a 32 + a 12 a 23 a 31
Comments