Answer to Question #114974 in Linear Algebra for Mdanda Nolwazi

Question #114974
Evaluate det (A) by expanding along the 2nd row.
1
Expert's answer
2020-05-09T15:34:12-0400
det(A)=j=1n(1)i+jaijMjidet(A)=\sum_{j=1}^n (-1)^{i+j} a_{ij} M_j^i

Mjiadditional minor to element aijM_j^i - additional \space minor \space to \space element \space a_{ij}


det(A)=a11a12a13a21a22a23a31a32a33=(1)2+1a21a12a13a32a33+det(A)=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =(-1)^{2+1}a_{21}\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}+


(1)2+2a22a11a13a31a33+(1)2+3a23a11a12a31a32=(-1)^{2+2}a_{22}\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}+(-1)^{2+3}a_{23}\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}=

a21(a12a33a13a32)+a22(a11a33a13a31)a23(a11a32a12a31)=-a_{21}(a_{12}a_{33}-a_{13}a_{32})+a_{22}(a_{11}a_{33}-a_{13}a_{31})-a_{23}(a_{11}a_{32}-a_{12}a_{31})=


a12a21a33+a13a21a32+a11a22a33a13a22a31a11a23a32+a12a23a31-a_{12}a_{21}a_{33}+a_{13}a_{21}a_{32}+a_{11}a_{22}a_{33}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}+a_{12}a_{23}a_{31}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment