First, we consider some of the equalities associated with taking derivative of composite functions:
"y=y(x)\\rightarrow\n\\left\\lbrace\\begin{array}{c}\n\\displaystyle\\frac{d}{dx}\\left(y^2\\right)=2y\\cdot y'\\\\[0.5cm]\n\\displaystyle\\frac{d}{dx}\\left(y'^2\\right)=2y'\\cdot y''\n\\end{array}\\right." Then,
"2y'\\cdot\\left|y''+\\omega^2y=0\\right.\\rightarrow 2y'\\cdot y''+\\omega^2\\cdot(2y'\\cdot y)=0\\rightarrow""\\frac{d}{dx}\\left(y'^2\\right)+\\frac{d}{dx}\\left(\\omega^2\\cdot y^2\\right)=0\\rightarrow\\frac{d}{dx}\\left(y'^2+\\omega^2\\cdot y^2\\right)=0\\rightarrow""y'^2+\\omega^2\\cdot y^2=C^2\\rightarrow\\frac{dy}{dx}=\\pm\\sqrt{C^2-\\omega^2\\cdot y^2}\\rightarrow""\\frac{dy}{\\sqrt{C^2-\\omega^2\\cdot y^2}}=\\pm dx\\rightarrow\n\\int\\frac{dy}{C\\cdot\\sqrt{1-\\left(\\frac{\\omega\\cdot y}{C}\\right)^2}}=\\pm\\int 1dx\\rightarrow""\\textit{We introduce a substitution}\\\\\nu=\\frac{\\omega\\cdot y}{C}\\rightarrow du=\\frac{\\omega\\cdot dy}{C}\\rightarrow dy=\\frac{C\\cdot du}{\\omega}\\rightarrow"
"\\int\\frac{C\\cdot du}{\\omega\\cdot C\\cdot\\sqrt{1-u^2}}=\\pm x+C_1\\rightarrow\\frac{1}{\\omega}\\cdot\\arcsin(u)=\\pm x+C_1\\rightarrow"
"\\arcsin\\left(\\frac{\\omega\\cdot y}{C}\\right)=\\omega(\\pm x+C_1)\\rightarrow\\frac{\\omega\\cdot y}{C}=\\sin\\left(C_1\\omega\\pm\\omega x\\right)\\rightarrow"
"y(x)=\\frac{C}{\\omega}\\cdot\\sin\\left(\\overbrace{C_1\\omega}^{A_1}\\pm\\omega\\cdot x\\right)" Conclusion,
"\\boxed{y(x)=\\frac{C}{\\omega}\\cdot\\sin\\left(A_1\\pm\\omega\\cdot x\\right)}" ANSWER
"y(x)=\\frac{C}{\\omega}\\cdot\\sin\\left(A_1\\pm\\omega\\cdot x\\right)"
Comments
Leave a comment