Answer to Question #87112 in Differential Equations for Bishal

Question #87112
obtain the riccati equation associated with the equation y''+w2y=0 and hence find its solution.

w=omega
1
Expert's answer
2019-03-28T10:55:35-0400

First, we consider some of the equalities associated with taking derivative of composite functions:


y=y(x){ddx(y2)=2yyddx(y2)=2yyy=y(x)\rightarrow \left\lbrace\begin{array}{c} \displaystyle\frac{d}{dx}\left(y^2\right)=2y\cdot y'\\[0.5cm] \displaystyle\frac{d}{dx}\left(y'^2\right)=2y'\cdot y'' \end{array}\right.

Then,


2yy+ω2y=02yy+ω2(2yy)=02y'\cdot\left|y''+\omega^2y=0\right.\rightarrow 2y'\cdot y''+\omega^2\cdot(2y'\cdot y)=0\rightarrowddx(y2)+ddx(ω2y2)=0ddx(y2+ω2y2)=0\frac{d}{dx}\left(y'^2\right)+\frac{d}{dx}\left(\omega^2\cdot y^2\right)=0\rightarrow\frac{d}{dx}\left(y'^2+\omega^2\cdot y^2\right)=0\rightarrowy2+ω2y2=C2dydx=±C2ω2y2y'^2+\omega^2\cdot y^2=C^2\rightarrow\frac{dy}{dx}=\pm\sqrt{C^2-\omega^2\cdot y^2}\rightarrowdyC2ω2y2=±dxdyC1(ωyC)2=±1dx\frac{dy}{\sqrt{C^2-\omega^2\cdot y^2}}=\pm dx\rightarrow \int\frac{dy}{C\cdot\sqrt{1-\left(\frac{\omega\cdot y}{C}\right)^2}}=\pm\int 1dx\rightarrowWe introduce a substitutionu=ωyCdu=ωdyCdy=Cduω\textit{We introduce a substitution}\\ u=\frac{\omega\cdot y}{C}\rightarrow du=\frac{\omega\cdot dy}{C}\rightarrow dy=\frac{C\cdot du}{\omega}\rightarrow


CduωC1u2=±x+C11ωarcsin(u)=±x+C1\int\frac{C\cdot du}{\omega\cdot C\cdot\sqrt{1-u^2}}=\pm x+C_1\rightarrow\frac{1}{\omega}\cdot\arcsin(u)=\pm x+C_1\rightarrow

arcsin(ωyC)=ω(±x+C1)ωyC=sin(C1ω±ωx)\arcsin\left(\frac{\omega\cdot y}{C}\right)=\omega(\pm x+C_1)\rightarrow\frac{\omega\cdot y}{C}=\sin\left(C_1\omega\pm\omega x\right)\rightarrow

y(x)=Cωsin(C1ωA1±ωx)y(x)=\frac{C}{\omega}\cdot\sin\left(\overbrace{C_1\omega}^{A_1}\pm\omega\cdot x\right)

Conclusion,


y(x)=Cωsin(A1±ωx)\boxed{y(x)=\frac{C}{\omega}\cdot\sin\left(A_1\pm\omega\cdot x\right)}

ANSWER

y(x)=Cωsin(A1±ωx)y(x)=\frac{C}{\omega}\cdot\sin\left(A_1\pm\omega\cdot x\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment