Question #86758
2x(y+z^2)p+y(2y+z^2)q=z^2
And prove thatyz(z^2+2z-2y)=x^2
1
Expert's answer
2019-04-29T10:22:54-0400

1)

2x(y+z2)z/x+y(2y+z2)z/y=z22x(y+z^2)\partial z/\partial x+y(2y+z^2)\partial z/\partial y=z^2

dx/(2x(y+z2))=dy/(y(2y+z2))=dz/z2dx/(2x(y+z^2))=dy/(y(2y+z^2))=dz/z^2

ydx/(2xy2+2xyz2)=xdy/(2xy2+xyz2))=xydz/(xyz2)ydx/(2xy^2+2xyz^2)=xdy/(2xy^2+xyz^2))=xydz/(xyz^2)

(ydxxdyxydz)/(2xy2+2xyz22xy2xyz2xyz2)=(ydxxdyxydz)/0(ydx-xdy-xydz)/(2xy^2+2xyz^2-2xy^2-xyz^2-xyz^2)=(ydx-xdy-xydz)/0

ydxxdyxydz=0ydx-xdy-xydz=0

dx/xdy/ydz=0dx/x-dy/y-dz=0

lnxlnyz=clnx-lny-z=c

z=ln(x/y)+Cz=ln(x/y)+C

2)

yz(z2+2z2y)=x2yz(z^2+2z-2y)=x^2

yz3+2yz22y2z=x2yz^3+2yz^2-2y^2z=x^2

Differentiate respect to x:


3yz2p+4yzp2y2p=2x3yz^2p+4yzp-2y^2p=2x

py(3z2+4z2y)=2xpy(3z^2+4z-2y)=2x

Differentiate respect to y:


z3+3z2yq+2z2+4yzq4yz2y2q=0z^3+3z^2yq+2z^2+4yzq-4yz-2y^2q=0

qy(3z2+4z2y)+z3+2z24yz=0qy(3z^2+4z-2y)+z^3+2z^2-4yz=0

So we have:


3z2+4z2y=2x/(py)3z^2+4z-2y=2x/(py)

2xq/p+z3+2z24yz=02xq/p+z^3+2z^2-4yz=0

Since


p=1/xp=1/x

q=1/yq=-1/y

then:


2x2/y+z3+2z24yz=0-2x^2/y+z^3+2z^2-4yz=0

2x2+y(z3+2z24yz)=0-2x^2+y(z^3+2z^2-4yz)=0

yz(z2+2z4y)=2x2yz(z^2+2z-4y)=2x^2

So:


(z2+2z4y)/(z2+2z2y)=2(z^2+2z-4y)/(z^2+2z-2y)=2

z2+2z4y=2z2+4z4yz^2+2z-4y=2z^2+4z-4y

z2+2z=0z^2+2z=0

So we get that the statement can be proved if


z=0z=0

or


z=2z=-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
19.03.20, 17:59

Please use the panel for submitting new questions. We did not understand math formulas in your question.

Pappu Kumar Gupta
19.03.20, 17:53

Interpret the initial value problem 0 0 0 2 2 2 0, (0) , w q b q q q q =   + = = t= dt d dt d for any physical situation and hence solve the problem

LATEST TUTORIALS
APPROVED BY CLIENTS