1)
2x(y+z2)∂z/∂x+y(2y+z2)∂z/∂y=z2
dx/(2x(y+z2))=dy/(y(2y+z2))=dz/z2
ydx/(2xy2+2xyz2)=xdy/(2xy2+xyz2))=xydz/(xyz2)
(ydx−xdy−xydz)/(2xy2+2xyz2−2xy2−xyz2−xyz2)=(ydx−xdy−xydz)/0
ydx−xdy−xydz=0
dx/x−dy/y−dz=0
lnx−lny−z=c
z=ln(x/y)+C
2)
yz(z2+2z−2y)=x2
yz3+2yz2−2y2z=x2 Differentiate respect to x:
3yz2p+4yzp−2y2p=2x
py(3z2+4z−2y)=2x Differentiate respect to y:
z3+3z2yq+2z2+4yzq−4yz−2y2q=0
qy(3z2+4z−2y)+z3+2z2−4yz=0 So we have:
3z2+4z−2y=2x/(py)
2xq/p+z3+2z2−4yz=0 Since
p=1/x
q=−1/y then:
−2x2/y+z3+2z2−4yz=0
−2x2+y(z3+2z2−4yz)=0
yz(z2+2z−4y)=2x2 So:
(z2+2z−4y)/(z2+2z−2y)=2
z2+2z−4y=2z2+4z−4y
z2+2z=0 So we get that the statement can be proved if
z=0 or
z=−2
Comments
Please use the panel for submitting new questions. We did not understand math formulas in your question.
Interpret the initial value problem 0 0 0 2 2 2 0, (0) , w q b q q q q = + = = t= dt d dt d for any physical situation and hence solve the problem