1)
"2x(y+z^2)\\partial z\/\\partial x+y(2y+z^2)\\partial z\/\\partial y=z^2""dx\/(2x(y+z^2))=dy\/(y(2y+z^2))=dz\/z^2"
"ydx\/(2xy^2+2xyz^2)=xdy\/(2xy^2+xyz^2))=xydz\/(xyz^2)"
"(ydx-xdy-xydz)\/(2xy^2+2xyz^2-2xy^2-xyz^2-xyz^2)=(ydx-xdy-xydz)\/0"
"ydx-xdy-xydz=0"
"dx\/x-dy\/y-dz=0"
"lnx-lny-z=c"
"z=ln(x\/y)+C"
2)
"yz(z^2+2z-2y)=x^2"
"yz^3+2yz^2-2y^2z=x^2"
Differentiate respect to x:
"py(3z^2+4z-2y)=2x"
Differentiate respect to y:
"qy(3z^2+4z-2y)+z^3+2z^2-4yz=0"
So we have:
"2xq\/p+z^3+2z^2-4yz=0"
Since
"q=-1\/y"
then:
"-2x^2+y(z^3+2z^2-4yz)=0"
"yz(z^2+2z-4y)=2x^2"
So:
"z^2+2z-4y=2z^2+4z-4y"
"z^2+2z=0"
So we get that the statement can be proved if
or
Comments
Please use the panel for submitting new questions. We did not understand math formulas in your question.
Interpret the initial value problem 0 0 0 2 2 2 0, (0) , w q b q q q q = + = = t= dt d dt d for any physical situation and hence solve the problem
Leave a comment