Question #86618
solve the heat conduction equation: 8*∂^2u(x,t) /∂x^2 = ∂u(x,t)/∂t; for0<x<5 and t>0 the following boundary and initial conditions: u(0,t) = u(5,t) = 0, u(x,0) = 2sin(πx) − 4sin(2πx)
1
Expert's answer
2019-04-09T09:58:41-0400
u/t=8 (2 u)/(x2 )      (0<x<5, t>0)\partial u/\partial t=8\ (\partial^2\ u)/(\partial x^2\ )\ \ \ \ \ \ (0<x<5,\ t>0)

u(0,t)=u(5,t)=0    ( t0), u(x,0)=2sinπx4sin2πx      (0<x<5).u(0,t)=u(5,t)=0\ \ \ \ (\ t\geq0),\ u(x,0)=2\sin \pi x-4\sin 2\pi x\ \ \ \ \ \ (0<x<5).

Using separation of variables, with u(x,t)=X(x)T(t)u(x,t)=X(x)T(t) :

X(x) T(˙t)=kT(t)X(x)(T(˙t))/kT(t) =(X(x))/X(x) =λX(x)\ T\dot (t)=kT(t) X^{\prime\prime} (x)\Rightarrow(T \dot(t))/kT(t)\ =(X^{\prime\prime} (x))/X(x)\ =-\lambda

u(0,t)=u(5,t)=0    ( t0)           X(0)=X(5)=0u(0,t)=u(5,t)=0\ \ \ \ (\ t\geq0)\ \ \ \ \ \ \ \ \ \ \ X(0)=X(5)=0

We got an eigenvalue problem for X (x):

X(x)+λX(x)=0,X(0)=X(5)=0Xn(x)=sinπnx/5,  λn=(n2π2)/25, n=1,2,X^{\prime\prime} (x)+\lambda X(x)=0, X(0)=X(5)=0 \Rightarrow X_n (x)=\sin{\pi nx/5} ,\ \ \lambda_n=(n^2 \pi^2)/25,\ n=1,2,\dots

On substituting eigenvalue to differential equation, we obtain


(T˙n(t))/(8Tn(t))=λn=n2π225T˙(t)+8n2π225Tn(t)=0(\dot T_n(t))/(8T_n(t))=-\lambda_n=\frac{n^2\pi^2}{25} \Rightarrow \dot T(t)+8 \frac{n^2\pi^2}{25} T_n (t)=0Tn(t)=anexp(8n2π225t)T_n(t) = a_n \exp{\left(-8 \frac{n^2\pi^2}{25}t\right)}

General Solution:


u(x,t)=n=0  Tn(t)Xn(x)=n=0  anexp(8n2π225t)sin(πnx/5)u\left(x,t\right)=\sum_{n=0}^{\infty\ \ }{T_n\left(t\right)X_n\left(x\right)}=\sum_{n=0}^{\infty\ \ }{a_n\exp{\left(-8 \frac{n^2\pi^2}{25}t\right)}\sin{\left(\pi nx/5\right)}}

Applying initial condition:


u(x,0)=n=0  ansin(πnx/5)=2sin(πx)4sin(2πx)u\left(x,0\right)=\sum_{n=0}^{\infty\ \ }{a_n\sin{\left(\pi nx/5\right)}} = 2\sin{(\pi x)} - 4 \sin{(2\pi x)}

As X_N(x) is orthonormal basis, a5=2,a10=4,andan=0a_5 = 2, a_{10} = -4,\, and \, a_n=0 all other possible values of n.

Finally:


u(x,t)=2exp(8π2t)sin(πx)4exp(32π2t)sin(2πx)u\left(x,t\right)=2\exp{(-8\pi^2 t)} \sin{\left(\pi x\right)} - 4\exp{(-32\pi^2 t)} \sin{\left(2 \pi x\right)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS