"u(0,t)=u(5,t)=0\\ \\ \\ \\ (\\ t\\geq0),\\ u(x,0)=2\\sin \\pi x-4\\sin 2\\pi x\\ \\ \\ \\ \\ \\ (0<x<5)."
Using separation of variables, with "u(x,t)=X(x)T(t)" :
"X(x)\\ T\\dot (t)=kT(t) X^{\\prime\\prime} (x)\\Rightarrow(T \\dot(t))\/kT(t)\\ =(X^{\\prime\\prime} (x))\/X(x)\\ =-\\lambda"
"u(0,t)=u(5,t)=0\\ \\ \\ \\ (\\ t\\geq0)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ X(0)=X(5)=0"
We got an eigenvalue problem for X (x):
"X^{\\prime\\prime} (x)+\\lambda X(x)=0, X(0)=X(5)=0 \\Rightarrow X_n (x)=\\sin{\\pi nx\/5} ,\\ \\ \\lambda_n=(n^2 \\pi^2)\/25,\\ n=1,2,\\dots"On substituting eigenvalue to differential equation, we obtain
General Solution:
Applying initial condition:
As X_N(x) is orthonormal basis, "a_5 = 2, a_{10} = -4,\\, and \\, a_n=0" all other possible values of n.
Finally:
Comments
Leave a comment