∂u/∂t=8 (∂2 u)/(∂x2 ) (0<x<5, t>0)
u(0,t)=u(5,t)=0 ( t≥0), u(x,0)=2sinπx−4sin2πx (0<x<5).Using separation of variables, with u(x,t)=X(x)T(t) :
X(x) T(˙t)=kT(t)X′′(x)⇒(T(˙t))/kT(t) =(X′′(x))/X(x) =−λ
u(0,t)=u(5,t)=0 ( t≥0) X(0)=X(5)=0 We got an eigenvalue problem for X (x):
X′′(x)+λX(x)=0,X(0)=X(5)=0⇒Xn(x)=sinπnx/5, λn=(n2π2)/25, n=1,2,… On substituting eigenvalue to differential equation, we obtain
(T˙n(t))/(8Tn(t))=−λn=25n2π2⇒T˙(t)+825n2π2Tn(t)=0Tn(t)=anexp(−825n2π2t)
General Solution:
u(x,t)=n=0∑∞ Tn(t)Xn(x)=n=0∑∞ anexp(−825n2π2t)sin(πnx/5) Applying initial condition:
u(x,0)=n=0∑∞ ansin(πnx/5)=2sin(πx)−4sin(2πx) As X_N(x) is orthonormal basis, a5=2,a10=−4,andan=0 all other possible values of n.
Finally:
u(x,t)=2exp(−8π2t)sin(πx)−4exp(−32π2t)sin(2πx)
Comments