Solution:
If
p 2 x + q 2 y − z = 0 p^2x+q^2y-z=0 p 2 x + q 2 y − z = 0 then
z = p 2 x + q 2 y . ( 1 ) z=p^2x+q^2y.(1) z = p 2 x + q 2 y . ( 1 ) Find p and q the Charpit"s method:
d p d f d x + p d f d z = d q d f d y + q d f d z = d z − p d f d p − q d f d q = d x − d f d p = d y − d f d q , \frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{-\frac{df}{dp}}=\frac{dy}{-\frac{df}{dq}}, d x df + p d z df d p = d y df + q d z df d q = − p d p df − q d q df d z = − d p df d x = − d q df d y ,
where
f ( x , y , z , p , q ) = p 2 x + q 2 y − z , f(x,y,z,p,q)=p^2x+q^2y-z, f ( x , y , z , p , q ) = p 2 x + q 2 y − z ,
d f d x = p 2 , d f d y = q 2 , d f d z = − 1 , d f d p = 2 x p , d f d q = 2 y q . \frac{df}{dx}=p^2,\frac{df}{dy}=q^2,\frac{df}{dz}=-1,\frac{df}{dp}=2xp,\frac{df}{dq}=2yq. d x df = p 2 , d y df = q 2 , d z df = − 1 , d p df = 2 x p , d q df = 2 y q . Then
d p p ( p − 1 ) = d q q ( q − 1 ) = d z − 2 ( x p 2 + y q 2 ) = d x − 2 x p = d y − 2 y q , \frac{dp}{p(p-1)}=\frac{dq}{q(q-1)}=\frac{dz}{-2(xp^2+yq^2)}=\frac{dx}{-2xp}=\frac{dy}{-2yq}, p ( p − 1 ) d p = q ( q − 1 ) d q = − 2 ( x p 2 + y q 2 ) d z = − 2 x p d x = − 2 y q d y , from here we have
d p p ( p − 1 ) = d x − 2 x p , \frac{dp}{p(p-1)}=\frac{dx}{-2xp}, p ( p − 1 ) d p = − 2 x p d x ,
∫ d p p − 1 = ∫ d x − 2 x , \int\frac{dp}{p-1}=\int\frac{dx}{-2x}, ∫ p − 1 d p = ∫ − 2 x d x ,
l n ( p − 1 ) = l n ( 1 x ) + l n ( a ) , ln(p-1)=ln(\frac{1}{\sqrt{x}})+ln(a), l n ( p − 1 ) = l n ( x 1 ) + l n ( a ) , p = a x + 1 ; p=\frac{a}{\sqrt{x}}+1; p = x a + 1 ;
d q q ( q − 1 ) = d y − 2 y q , \frac{dq}{q(q-1)}=\frac{dy}{-2yq}, q ( q − 1 ) d q = − 2 y q d y ,
∫ d q q ( q − 1 ) = ∫ d y − 2 y q , \int\frac{dq}{q(q-1)}=\int\frac{dy}{-2yq}, ∫ q ( q − 1 ) d q = ∫ − 2 y q d y ,
l n ( q − 1 ) = l n ( 1 y ) + l n ( b ) , ln(q-1)=ln(\frac{1}{\sqrt{y}})+ln(b), l n ( q − 1 ) = l n ( y 1 ) + l n ( b ) ,
q = b y + 1. q=\frac{b}{\sqrt{y}}+1. q = y b + 1. Put p and q in (1):
z = ( a x + 1 ) 2 x + ( b y + 1 ) 2 y z=(\frac{a}{\sqrt{x}}+1)^2x+(\frac{b}{\sqrt{y}}+1)^2y z = ( x a + 1 ) 2 x + ( y b + 1 ) 2 y or
z = x + y + 2 ( a x + b y ) + a 2 + b 2 . z=x+y+2(a\sqrt{x}+b\sqrt{y})+a^2+b^2. z = x + y + 2 ( a x + b y ) + a 2 + b 2 . Answer:
z = x + y + 2 ( a x + b y ) + a 2 + b 2 . z=x+y+2(a\sqrt{x}+b\sqrt{y})+a^2+b^2. z = x + y + 2 ( a x + b y ) + a 2 + b 2 .
Comments