Solution:
If
p2x+q2y−z=0 then
z=p2x+q2y.(1)Find p and q the Charpit"s method:
dxdf+pdzdfdp=dydf+qdzdfdq=−pdpdf−qdqdfdz=−dpdfdx=−dqdfdy,
where
f(x,y,z,p,q)=p2x+q2y−z,
dxdf=p2,dydf=q2,dzdf=−1,dpdf=2xp,dqdf=2yq. Then
p(p−1)dp=q(q−1)dq=−2(xp2+yq2)dz=−2xpdx=−2yqdy, from here we have
p(p−1)dp=−2xpdx,
∫p−1dp=∫−2xdx,
ln(p−1)=ln(x1)+ln(a),p=xa+1;
q(q−1)dq=−2yqdy,
∫q(q−1)dq=∫−2yqdy,
ln(q−1)=ln(y1)+ln(b),
q=yb+1. Put p and q in (1):
z=(xa+1)2x+(yb+1)2y or
z=x+y+2(ax+by)+a2+b2. Answer:
z=x+y+2(ax+by)+a2+b2.
Comments
Leave a comment