Answer to Question #86487 in Differential Equations for Kalipada

Question #86487
P^2x+q^2y-z=0
1
Expert's answer
2019-03-18T13:44:31-0400

Solution:

If


p2x+q2yz=0p^2x+q^2y-z=0

then

z=p2x+q2y.(1)z=p^2x+q^2y.(1)

Find p and q the Charpit"s method:


dpdfdx+pdfdz=dqdfdy+qdfdz=dzpdfdpqdfdq=dxdfdp=dydfdq,\frac{dp}{\frac{df}{dx}+p\frac{df}{dz}}=\frac{dq}{\frac{df}{dy}+q\frac{df}{dz}}=\frac{dz}{-p\frac{df}{dp}-q\frac{df}{dq}}=\frac{dx}{-\frac{df}{dp}}=\frac{dy}{-\frac{df}{dq}},

where


f(x,y,z,p,q)=p2x+q2yz,f(x,y,z,p,q)=p^2x+q^2y-z,

dfdx=p2,dfdy=q2,dfdz=1,dfdp=2xp,dfdq=2yq.\frac{df}{dx}=p^2,\frac{df}{dy}=q^2,\frac{df}{dz}=-1,\frac{df}{dp}=2xp,\frac{df}{dq}=2yq.

Then


dpp(p1)=dqq(q1)=dz2(xp2+yq2)=dx2xp=dy2yq,\frac{dp}{p(p-1)}=\frac{dq}{q(q-1)}=\frac{dz}{-2(xp^2+yq^2)}=\frac{dx}{-2xp}=\frac{dy}{-2yq},

from here we have


dpp(p1)=dx2xp,\frac{dp}{p(p-1)}=\frac{dx}{-2xp},

dpp1=dx2x,\int\frac{dp}{p-1}=\int\frac{dx}{-2x},

ln(p1)=ln(1x)+ln(a),ln(p-1)=ln(\frac{1}{\sqrt{x}})+ln(a),p=ax+1;p=\frac{a}{\sqrt{x}}+1;

dqq(q1)=dy2yq,\frac{dq}{q(q-1)}=\frac{dy}{-2yq},

dqq(q1)=dy2yq,\int\frac{dq}{q(q-1)}=\int\frac{dy}{-2yq},

ln(q1)=ln(1y)+ln(b),ln(q-1)=ln(\frac{1}{\sqrt{y}})+ln(b),

q=by+1.q=\frac{b}{\sqrt{y}}+1.

Put p and q in (1):

z=(ax+1)2x+(by+1)2yz=(\frac{a}{\sqrt{x}}+1)^2x+(\frac{b}{\sqrt{y}}+1)^2y

or

z=x+y+2(ax+by)+a2+b2.z=x+y+2(a\sqrt{x}+b\sqrt{y})+a^2+b^2.

Answer:

z=x+y+2(ax+by)+a2+b2.z=x+y+2(a\sqrt{x}+b\sqrt{y})+a^2+b^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment