Answer to Question #86487 in Differential Equations for Kalipada

Question #86487
P^2x+q^2y-z=0
1
Expert's answer
2019-03-18T13:44:31-0400

Solution:

If


"p^2x+q^2y-z=0"

then

"z=p^2x+q^2y.(1)"

Find p and q the Charpit"s method:


"\\frac{dp}{\\frac{df}{dx}+p\\frac{df}{dz}}=\\frac{dq}{\\frac{df}{dy}+q\\frac{df}{dz}}=\\frac{dz}{-p\\frac{df}{dp}-q\\frac{df}{dq}}=\\frac{dx}{-\\frac{df}{dp}}=\\frac{dy}{-\\frac{df}{dq}},"

where


"f(x,y,z,p,q)=p^2x+q^2y-z,"

"\\frac{df}{dx}=p^2,\\frac{df}{dy}=q^2,\\frac{df}{dz}=-1,\\frac{df}{dp}=2xp,\\frac{df}{dq}=2yq."

Then


"\\frac{dp}{p(p-1)}=\\frac{dq}{q(q-1)}=\\frac{dz}{-2(xp^2+yq^2)}=\\frac{dx}{-2xp}=\\frac{dy}{-2yq},"

from here we have


"\\frac{dp}{p(p-1)}=\\frac{dx}{-2xp},"

"\\int\\frac{dp}{p-1}=\\int\\frac{dx}{-2x},"

"ln(p-1)=ln(\\frac{1}{\\sqrt{x}})+ln(a),""p=\\frac{a}{\\sqrt{x}}+1;"

"\\frac{dq}{q(q-1)}=\\frac{dy}{-2yq},"

"\\int\\frac{dq}{q(q-1)}=\\int\\frac{dy}{-2yq},"

"ln(q-1)=ln(\\frac{1}{\\sqrt{y}})+ln(b),"

"q=\\frac{b}{\\sqrt{y}}+1."

Put p and q in (1):

"z=(\\frac{a}{\\sqrt{x}}+1)^2x+(\\frac{b}{\\sqrt{y}}+1)^2y"

or

"z=x+y+2(a\\sqrt{x}+b\\sqrt{y})+a^2+b^2."

Answer:

"z=x+y+2(a\\sqrt{x}+b\\sqrt{y})+a^2+b^2."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS