Solution:
If
then
"z=p^2x+q^2y.(1)"Find p and q the Charpit"s method:
where
"\\frac{df}{dx}=p^2,\\frac{df}{dy}=q^2,\\frac{df}{dz}=-1,\\frac{df}{dp}=2xp,\\frac{df}{dq}=2yq."
Then
from here we have
"\\int\\frac{dp}{p-1}=\\int\\frac{dx}{-2x},"
"ln(p-1)=ln(\\frac{1}{\\sqrt{x}})+ln(a),""p=\\frac{a}{\\sqrt{x}}+1;"
"\\frac{dq}{q(q-1)}=\\frac{dy}{-2yq},"
"\\int\\frac{dq}{q(q-1)}=\\int\\frac{dy}{-2yq},"
"ln(q-1)=ln(\\frac{1}{\\sqrt{y}})+ln(b),"
"q=\\frac{b}{\\sqrt{y}}+1."
Put p and q in (1):
"z=(\\frac{a}{\\sqrt{x}}+1)^2x+(\\frac{b}{\\sqrt{y}}+1)^2y"or
"z=x+y+2(a\\sqrt{x}+b\\sqrt{y})+a^2+b^2."Answer:
"z=x+y+2(a\\sqrt{x}+b\\sqrt{y})+a^2+b^2."
Comments
Leave a comment