By introducing a substitution,
"t = 3(x-1)^2 - \\frac{1}{2}; \\\\ \nx = \\sqrt{\\frac{t+\\frac{1}{2}}{3}}+1; \\\\\ndx = \\frac{dt}{\\sqrt{6}\\sqrt{2t+1}}; \\\\ \n\\smallint{\\frac{dx}{\\sqrt{3x^2-6x+2}}} = \\frac{1}{\\sqrt{6*2}}\\smallint{\\frac{dt}{\\sqrt{t+\\frac{1}{2}}\\sqrt{t-\\frac{1}{2}}}} = \\frac{1}{\\sqrt{12}}\\smallint{\\frac{dt}{\\sqrt{t^2-\\frac{1}{4}}}} = \\frac{1}{\\sqrt{12}}\\log{|t+\\sqrt{t^2-\\frac{1}{4}}|} = \\frac{1}{2\\sqrt{3}}\\log{|3(x-1)^2 - \\frac{1}{2}+(x-1)\\sqrt{3(3x^2-6x+2)}|}."
Comments
Leave a comment