Solution:
If
"u(x,t)=cos acx sin at(1)"is a solution of the wave equation
"\\frac{ \u2202 ^2u}{\u2202t^2}=\\frac{c^2\u2202 ^2u}{\u2202 x^2},(2)"then
"\\frac{ \u2202 ^2u}{\u2202t^2}=-a^2cos acx sin at,(4)"
"\\frac{ \u2202 u}{\u2202x}=-acsin acx sin at,(5)"
"\\frac{ \u2202 ^2u}{\u2202x^2}=-a^2c^2cos acx sin at,(6)"
and
"-a^2cos acx sin at=-a^2c^4cos acx sin at.(7)"Then from equation (7) we find c:
"c^4=\\frac{-a^2cos acx sin at}{-a^2cos acx sin at},""c^4=1,"
"c=1\\\\ {and }\\\\ c=-1."
Answer: c=1 and c=-1.
Comments
Leave a comment