Answer to Question #86617 in Differential Equations for Evol

Question #86617
obtain the value of the constant c for which the function u(x,t) = cosαcxsinαt is a solution of the wave equation ∂ ^2u/∂t^2 = c^2∂ ^2u/∂ x^2
1
Expert's answer
2019-03-19T10:41:51-0400

Solution:

If

u(x,t)=cosacxsinat(1)u(x,t)=cos acx sin at(1)

is a solution of the wave equation

2ut2=c22ux2,(2)\frac{ ∂ ^2u}{∂t^2}=\frac{c^2∂ ^2u}{∂ x^2},(2)

then


ut=acosacxcosat,(3)\frac{ ∂ u}{∂t}=acos acx cos at,(3)

2ut2=a2cosacxsinat,(4)\frac{ ∂ ^2u}{∂t^2}=-a^2cos acx sin at,(4)

ux=acsinacxsinat,(5)\frac{ ∂ u}{∂x}=-acsin acx sin at,(5)

2ux2=a2c2cosacxsinat,(6)\frac{ ∂ ^2u}{∂x^2}=-a^2c^2cos acx sin at,(6)

and

a2cosacxsinat=a2c4cosacxsinat.(7)-a^2cos acx sin at=-a^2c^4cos acx sin at.(7)

Then from equation (7) we find c:

c4=a2cosacxsinata2cosacxsinat,c^4=\frac{-a^2cos acx sin at}{-a^2cos acx sin at},

c4=1,c^4=1,

c=1andc=1.c=1\\ {and }\\ c=-1.

Answer: c=1 and c=-1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment