Solution:
If
u(x,t)=cosacxsinat(1) is a solution of the wave equation
∂t2∂2u=∂x2c2∂2u,(2) then
∂t∂u=acosacxcosat,(3)
∂t2∂2u=−a2cosacxsinat,(4)
∂x∂u=−acsinacxsinat,(5)
∂x2∂2u=−a2c2cosacxsinat,(6) and
−a2cosacxsinat=−a2c4cosacxsinat.(7) Then from equation (7) we find c:
c4=−a2cosacxsinat−a2cosacxsinat,
c4=1,
c=1andc=−1. Answer: c=1 and c=-1.
Comments
Leave a comment