The solution of this equation will be sought in the form
"u(x,t)=X(x)T(t)\\rightarrow\\frac{\\partial u}{\\partial t}=\\frac{\\partial}{\\partial t}\\left(X(x)T(t)\\right)=X(x)T'(t)""\\frac{\\partial^2 u}{\\partial x^2}=\\frac{\\partial^2}{\\partial x^2}\\left(X(x)T(t)\\right)=X''(x)T(t)" Substitute the derived derivatives in the initial equation
"8\\cdot\\frac{\\partial^2 u}{\\partial x^2}=\\frac{\\partial u}{\\partial t}\\rightarrow\\left.X(x)T'(t)=8\\cdot X''(x)T(t)\\right|\\div\\left(8\\cdot X(x)T(t)\\right)\\rightarrow""\\frac{T'(t)}{8\\cdot T(t)}=\\frac{X''(x)}{X(x)}\\rightarrow\\boxed{\\frac{X''(x)}{X(x)}=-\\lambda=\\frac{T'(t)}{8\\cdot T(t)}}" Rewrite the specified boundary conditions through the entered functions X(x) and T(t)
"u(0,t)=X(0)T(t)=0\\rightarrow X(0)=0\\\\\nu(5,t)=X(5)T(t)=0\\rightarrow X(5)=0" Conclusion
"\\left\\lbrace\\begin{array}{c}\n8\\cdot u_{xx}=u_t\\\\\nu(x,0)=2\\sin(\\pi x)-4\\sin(2\\pi x)\\\\\nu(0,t)=u(5,t)=0\\end{array}\\right.\\rightarrow""\\left\\lbrace\\begin{array}{c}\n\\displaystyle\\frac{X''(x)}{X(x)}=-\\lambda=\\displaystyle\\frac{T'(t)}{8\\cdot T(t)}\\\\[0.5 cm]\nu(x,0)=2\\sin(\\pi x)-4\\sin(2\\pi x)\\\\\nX(0)=0\\\\\nX(5)=0\\end{array}\\right."
To find the eigenvalues and functions, it is necessary to solve the Sturm-Liouville problem
"\\boxed{\\left\\lbrace\\begin{array}{c}\nX''+\\lambda X=0\\\\\nX(0)=0\\\\\nX(5)=0\\end{array}\\right.}" We can immediately assume that it only
"\\lambda=n^2>0" gives a non-trivial solution.
The solution is sought in the form
"X(x)=e^{kx}\\rightarrow X''=k^2\\cdot e^{kx}" Then,
"X''+\\lambda X=0\\rightarrow k^2\\cdot e^{kx}+n^2\\cdot e^{kx}=0\\rightarrow e^{kx}\\cdot\\left(k^2+n^2\\right)=0""k^2=-n^2\\rightarrow\n\\left\\lbrack\\begin{array}{c}\nk_1=\\sqrt{-n^2}=in\\\\\nk_2=-\\sqrt{-n^2}=-in\\\\\n\\end{array}\\right." Conclusion,
"X(x)=C_1\\cdot e^{k_1x}+C_2\\cdot e^{k_2x}=C_1\\cdot e^{inx}+C_2\\cdot e^{-inx}\\rightarrow"
"X(x)=A_1\\cdot\\cos(nx)+A_2\\cdot \\sin(nx)"
"\\boxed{X(x)= A_1\\cdot\\cos(nx)+A_2\\cdot \\sin(nx)}" To find constants A_1 and A_2 we use the boundary conditions.
"X(0)=0=A_1\\cos(n\\cdot 0)+A_2\\sin(n\\cdot 0)\\rightarrow\\boxed{A_1=0}""X(5)=0=A_2\\cdot\\sin(5n)" Since we are trying to find a non-trivial solution, then
"\\sin(5n)=0\\rightarrow 5n=\\pi k,\\quad k\\in\\mathbb{N}\\rightarrow\\boxed{n_k=\\left(\\frac{\\pi k}{5}\\right),\\quad k\\in\\mathbb{N}}" Conclusion,
"\\boxed{\\left\\lbrace\\begin{array}{c}\n\\lambda_k=\\displaystyle\\left(\\frac{\\pi k}{5}\\right)^2\\\\\nX_k(x)=A_2\\cdot\\sin\\left(\\displaystyle\\frac{\\pi kx}{5}\\right)\n\\end{array}\\right.}" Then,
"\\frac{T'(t)}{8\\cdot T(t)}=-\\lambda_k\\rightarrow\\frac{dT}{T}=-8\\cdot\\lambda_kdt\\rightarrow""\\int\\frac{dT}{t}=\\int(-8\\cdot\\lambda_kdt)\\rightarrow\\ln|T_k(t)|=\\ln|C_k|-8\\lambda_kt\\rightarrow""\\boxed{T_k(t)=C_k\\cdot e^{-8\\cdot\\lambda_kt}}" General conclusion,
"\\boxed{u(x,t)=\\sum_{k=1}^{\\infty}\\left(B_k\\cdot e^{-8\\cdot\\lambda_kt}\\cdot\\sin\\left(\\frac{\\pi kx}{5}\\right)\\right)}" To find constants B_k we use the boundary conditions.
"u(x,0)=2\\sin(\\pi x)-4\\sin(2\\pi x)=\\rightarrow""\\sum_{k=1}^{\\infty}\\left(B_k\\cdot\\sin\\left(\\frac{\\pi kx}{5}\\right)\\right)=2\\sin(\\pi x)-4\\sin(2\\pi x)\\rightarrow""\\boxed{\\left\\lbrace\\begin{array}{c}\nk=5 : B_5=2\\\\\nk=10 : B_{10}=-4\\\\\nB_k\\equiv 0,\\quad k=\\not 5,10\n\\end{array}\\right.}" General conclusion,
"u(x,t)=B_5\\cdot e^{-8\\cdot\\lambda_5 t}\\cdot\\sin(\\pi x)+B_{10}\\cdot e^{-8\\cdot\\lambda_{10} t}\\cdot\\sin(2\\pi x)""=2\\cdot e^{-8\\pi^2\\cdot 5^2\\cdot t\/25}\\cdot\\sin(\\pi x)-4\\cdot e^{-8\\pi^2\\cdot 10^2\\cdot t\/25}\\cdot\\sin(2\\pi x)\\rightarrow""\\boxed{u(x,t)=2\\cdot e^{-8\\pi^2 t}\\cdot\\sin(\\pi x)-4\\cdot e^{-32\\pi^2t}\\cdot\\sin(2\\pi x)}" ANSWER
"u(x,t)=2\\cdot e^{-8\\pi^2 t}\\cdot\\sin(\\pi x)-4\\cdot e^{-32\\pi^2t}\\cdot\\sin(2\\pi x)"
Comments
Leave a comment