Question #87078
solve the heat conduction equation: 8*∂^2u(x,t) /∂x^2 = ∂u(x,t)/∂t; for0<x<5 and t>0 the following boundary and initial conditions: u(0,t) = u(5,t) = 0, u(x,0) = 2sin(πx) − 4sin(2πx)
1
Expert's answer
2019-03-27T11:30:14-0400

The solution of this equation will be sought in the form


u(x,t)=X(x)T(t)ut=t(X(x)T(t))=X(x)T(t)u(x,t)=X(x)T(t)\rightarrow\frac{\partial u}{\partial t}=\frac{\partial}{\partial t}\left(X(x)T(t)\right)=X(x)T'(t)2ux2=2x2(X(x)T(t))=X(x)T(t)\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2}{\partial x^2}\left(X(x)T(t)\right)=X''(x)T(t)

Substitute the derived derivatives in the initial equation


82ux2=utX(x)T(t)=8X(x)T(t)÷(8X(x)T(t))8\cdot\frac{\partial^2 u}{\partial x^2}=\frac{\partial u}{\partial t}\rightarrow\left.X(x)T'(t)=8\cdot X''(x)T(t)\right|\div\left(8\cdot X(x)T(t)\right)\rightarrowT(t)8T(t)=X(x)X(x)X(x)X(x)=λ=T(t)8T(t)\frac{T'(t)}{8\cdot T(t)}=\frac{X''(x)}{X(x)}\rightarrow\boxed{\frac{X''(x)}{X(x)}=-\lambda=\frac{T'(t)}{8\cdot T(t)}}

Rewrite the specified boundary conditions through the entered functions X(x) and T(t)


u(0,t)=X(0)T(t)=0X(0)=0u(5,t)=X(5)T(t)=0X(5)=0u(0,t)=X(0)T(t)=0\rightarrow X(0)=0\\ u(5,t)=X(5)T(t)=0\rightarrow X(5)=0

Conclusion


{8uxx=utu(x,0)=2sin(πx)4sin(2πx)u(0,t)=u(5,t)=0\left\lbrace\begin{array}{c} 8\cdot u_{xx}=u_t\\ u(x,0)=2\sin(\pi x)-4\sin(2\pi x)\\ u(0,t)=u(5,t)=0\end{array}\right.\rightarrow{X(x)X(x)=λ=T(t)8T(t)u(x,0)=2sin(πx)4sin(2πx)X(0)=0X(5)=0\left\lbrace\begin{array}{c} \displaystyle\frac{X''(x)}{X(x)}=-\lambda=\displaystyle\frac{T'(t)}{8\cdot T(t)}\\[0.5 cm] u(x,0)=2\sin(\pi x)-4\sin(2\pi x)\\ X(0)=0\\ X(5)=0\end{array}\right.

To find the eigenvalues and functions, it is necessary to solve the Sturm-Liouville problem


{X+λX=0X(0)=0X(5)=0\boxed{\left\lbrace\begin{array}{c} X''+\lambda X=0\\ X(0)=0\\ X(5)=0\end{array}\right.}

We can immediately assume that it only


λ=n2>0\lambda=n^2>0

gives a non-trivial solution.

The solution is sought in the form


X(x)=ekxX=k2ekxX(x)=e^{kx}\rightarrow X''=k^2\cdot e^{kx}

Then,


X+λX=0k2ekx+n2ekx=0ekx(k2+n2)=0X''+\lambda X=0\rightarrow k^2\cdot e^{kx}+n^2\cdot e^{kx}=0\rightarrow e^{kx}\cdot\left(k^2+n^2\right)=0k2=n2[k1=n2=ink2=n2=ink^2=-n^2\rightarrow \left\lbrack\begin{array}{c} k_1=\sqrt{-n^2}=in\\ k_2=-\sqrt{-n^2}=-in\\ \end{array}\right.

Conclusion,


X(x)=C1ek1x+C2ek2x=C1einx+C2einxX(x)=C_1\cdot e^{k_1x}+C_2\cdot e^{k_2x}=C_1\cdot e^{inx}+C_2\cdot e^{-inx}\rightarrow




X(x)=A1cos(nx)+A2sin(nx)X(x)=A_1\cdot\cos(nx)+A_2\cdot \sin(nx)

X(x)=A1cos(nx)+A2sin(nx)\boxed{X(x)= A_1\cdot\cos(nx)+A_2\cdot \sin(nx)}

To find constants A_1 and A_2 we use the boundary conditions.


X(0)=0=A1cos(n0)+A2sin(n0)A1=0X(0)=0=A_1\cos(n\cdot 0)+A_2\sin(n\cdot 0)\rightarrow\boxed{A_1=0}X(5)=0=A2sin(5n)X(5)=0=A_2\cdot\sin(5n)

Since we are trying to find a non-trivial solution, then


sin(5n)=05n=πk,kNnk=(πk5),kN\sin(5n)=0\rightarrow 5n=\pi k,\quad k\in\mathbb{N}\rightarrow\boxed{n_k=\left(\frac{\pi k}{5}\right),\quad k\in\mathbb{N}}

Conclusion,


{λk=(πk5)2Xk(x)=A2sin(πkx5)\boxed{\left\lbrace\begin{array}{c} \lambda_k=\displaystyle\left(\frac{\pi k}{5}\right)^2\\ X_k(x)=A_2\cdot\sin\left(\displaystyle\frac{\pi kx}{5}\right) \end{array}\right.}

Then,


T(t)8T(t)=λkdTT=8λkdt\frac{T'(t)}{8\cdot T(t)}=-\lambda_k\rightarrow\frac{dT}{T}=-8\cdot\lambda_kdt\rightarrowdTt=(8λkdt)lnTk(t)=lnCk8λkt\int\frac{dT}{t}=\int(-8\cdot\lambda_kdt)\rightarrow\ln|T_k(t)|=\ln|C_k|-8\lambda_kt\rightarrowTk(t)=Cke8λkt\boxed{T_k(t)=C_k\cdot e^{-8\cdot\lambda_kt}}

General conclusion,


u(x,t)=k=1(Bke8λktsin(πkx5))\boxed{u(x,t)=\sum_{k=1}^{\infty}\left(B_k\cdot e^{-8\cdot\lambda_kt}\cdot\sin\left(\frac{\pi kx}{5}\right)\right)}

To find constants B_k we use the boundary conditions.


u(x,0)=2sin(πx)4sin(2πx)=u(x,0)=2\sin(\pi x)-4\sin(2\pi x)=\rightarrowk=1(Bksin(πkx5))=2sin(πx)4sin(2πx)\sum_{k=1}^{\infty}\left(B_k\cdot\sin\left(\frac{\pi kx}{5}\right)\right)=2\sin(\pi x)-4\sin(2\pi x)\rightarrow{k=5:B5=2k=10:B10=4Bk0,k=,10\boxed{\left\lbrace\begin{array}{c} k=5 : B_5=2\\ k=10 : B_{10}=-4\\ B_k\equiv 0,\quad k=\not 5,10 \end{array}\right.}

General conclusion,


u(x,t)=B5e8λ5tsin(πx)+B10e8λ10tsin(2πx)u(x,t)=B_5\cdot e^{-8\cdot\lambda_5 t}\cdot\sin(\pi x)+B_{10}\cdot e^{-8\cdot\lambda_{10} t}\cdot\sin(2\pi x)=2e8π252t/25sin(πx)4e8π2102t/25sin(2πx)=2\cdot e^{-8\pi^2\cdot 5^2\cdot t/25}\cdot\sin(\pi x)-4\cdot e^{-8\pi^2\cdot 10^2\cdot t/25}\cdot\sin(2\pi x)\rightarrowu(x,t)=2e8π2tsin(πx)4e32π2tsin(2πx)\boxed{u(x,t)=2\cdot e^{-8\pi^2 t}\cdot\sin(\pi x)-4\cdot e^{-32\pi^2t}\cdot\sin(2\pi x)}

ANSWER

u(x,t)=2e8π2tsin(πx)4e32π2tsin(2πx)u(x,t)=2\cdot e^{-8\pi^2 t}\cdot\sin(\pi x)-4\cdot e^{-32\pi^2t}\cdot\sin(2\pi x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS