The solution of this equation will be sought in the form
u(x,t)=X(x)T(t)→∂t∂u=∂t∂(X(x)T(t))=X(x)T′(t)∂x2∂2u=∂x2∂2(X(x)T(t))=X′′(x)T(t) Substitute the derived derivatives in the initial equation
8⋅∂x2∂2u=∂t∂u→X(x)T′(t)=8⋅X′′(x)T(t)∣÷(8⋅X(x)T(t))→8⋅T(t)T′(t)=X(x)X′′(x)→X(x)X′′(x)=−λ=8⋅T(t)T′(t) Rewrite the specified boundary conditions through the entered functions X(x) and T(t)
u(0,t)=X(0)T(t)=0→X(0)=0u(5,t)=X(5)T(t)=0→X(5)=0 Conclusion
⎩⎨⎧8⋅uxx=utu(x,0)=2sin(πx)−4sin(2πx)u(0,t)=u(5,t)=0→⎩⎨⎧X(x)X′′(x)=−λ=8⋅T(t)T′(t)u(x,0)=2sin(πx)−4sin(2πx)X(0)=0X(5)=0
To find the eigenvalues and functions, it is necessary to solve the Sturm-Liouville problem
⎩⎨⎧X′′+λX=0X(0)=0X(5)=0 We can immediately assume that it only
λ=n2>0 gives a non-trivial solution.
The solution is sought in the form
X(x)=ekx→X′′=k2⋅ekx Then,
X′′+λX=0→k2⋅ekx+n2⋅ekx=0→ekx⋅(k2+n2)=0k2=−n2→[k1=−n2=ink2=−−n2=−in Conclusion,
X(x)=C1⋅ek1x+C2⋅ek2x=C1⋅einx+C2⋅e−inx→
X(x)=A1⋅cos(nx)+A2⋅sin(nx)
X(x)=A1⋅cos(nx)+A2⋅sin(nx) To find constants A_1 and A_2 we use the boundary conditions.
X(0)=0=A1cos(n⋅0)+A2sin(n⋅0)→A1=0X(5)=0=A2⋅sin(5n) Since we are trying to find a non-trivial solution, then
sin(5n)=0→5n=πk,k∈N→nk=(5πk),k∈N Conclusion,
⎩⎨⎧λk=(5πk)2Xk(x)=A2⋅sin(5πkx) Then,
8⋅T(t)T′(t)=−λk→TdT=−8⋅λkdt→∫tdT=∫(−8⋅λkdt)→ln∣Tk(t)∣=ln∣Ck∣−8λkt→Tk(t)=Ck⋅e−8⋅λkt General conclusion,
u(x,t)=k=1∑∞(Bk⋅e−8⋅λkt⋅sin(5πkx)) To find constants B_k we use the boundary conditions.
u(x,0)=2sin(πx)−4sin(2πx)=→k=1∑∞(Bk⋅sin(5πkx))=2sin(πx)−4sin(2πx)→⎩⎨⎧k=5:B5=2k=10:B10=−4Bk≡0,k=5,10 General conclusion,
u(x,t)=B5⋅e−8⋅λ5t⋅sin(πx)+B10⋅e−8⋅λ10t⋅sin(2πx)=2⋅e−8π2⋅52⋅t/25⋅sin(πx)−4⋅e−8π2⋅102⋅t/25⋅sin(2πx)→u(x,t)=2⋅e−8π2t⋅sin(πx)−4⋅e−32π2t⋅sin(2πx) ANSWER
u(x,t)=2⋅e−8π2t⋅sin(πx)−4⋅e−32π2t⋅sin(2πx)
Comments