The one-dimensional wave equation has the form
"\\frac{\\partial^2 u}{\\partial t^2}=c^2\\cdot\\frac{\\partial^2 u}{\\partial x^2}" As you can see, you need to calculate the second partial derivatives of the specified function
"u(x,t)=\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)" Then,
"\\frac{\\partial u}{\\partial x}=\\frac{\\partial}{\\partial x}\\left(\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)\\right)=\\frac{d}{dx}\\left(\\cos(\\alpha cx)\\right)\\cdot\\sin(\\alpha t)=""=-c\\alpha\\cdot\\sin(\\alpha cx)\\cdot\\sin(\\alpha t)\\rightarrow""\\frac{\\partial^2 u}{\\partial x^2}=\\frac{\\partial}{\\partial x}\\left(\\frac{\\partial u}{\\partial x}\\right)=\\frac{\\partial}{\\partial x}\\left(-c\\alpha\\cdot\\sin(\\alpha cx)\\cdot\\sin(\\alpha t)\\right)=""=\\frac{d}{dx}\\left(-c\\alpha\\cdot\\sin(\\alpha cx)\\right)\\cdot\\sin(\\alpha t)=-c^2\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)" Conclusion,
"\\boxed{\\frac{\\partial^2 u}{\\partial x^2}=-c^2\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)}" Then,
"\\frac{\\partial u}{\\partial t}=\\frac{\\partial}{\\partial t}\\left(\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)\\right)=\\cos(\\alpha cx)\\cdot\\frac{d}{dt}\\left(\\sin(\\alpha t)\\right)=""=\\alpha\\cdot\\cos(\\alpha cx)\\cdot\\cos(\\alpha t)\\rightarrow""\\frac{\\partial^2 u}{\\partial t^2}=\\frac{\\partial}{\\partial t}\\left(\\frac{\\partial u}{\\partial t}\\right)=\\frac{\\partial}{\\partial t}\\left(\\alpha\\cdot\\cos(\\alpha cx)\\cdot\\cos(\\alpha t)\\right)=""=\\cos(\\alpha cx)\\cdot\\frac{d}{dt}\\left(\\alpha\\cdot\\cos(\\alpha t)\\right)=-\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)" Conclusion,
"\\boxed{\\frac{\\partial^2 u}{\\partial t^2}=-\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)}"
Substitute all found derivatives in the specified one-dimensional wave equation equation:
"\\frac{\\partial^2 u}{\\partial t^2}=c^2\\cdot\\frac{\\partial^2 u}{\\partial x^2}\\rightarrow""-\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)=c^2\\cdot\\left(-c^2\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)\\right)\\rightarrow""-\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)=-c^4\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)\\rightarrow""c^4\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)-\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)=0\\rightarrow""\\left(c^4-1\\right)\\cdot\\alpha^2\\cdot\\cos(\\alpha cx)\\cdot\\sin(\\alpha t)=0\\rightarrow""c^4-1=0\\rightarrow (c^2-1)(c^2+1)=0\\rightarrow (c-1)(c+2)(c^2+1)=0\\rightarrow""c-1=0\\quad or\\quad c+1=0\\quad or\\quad c^2+1=0\\rightarrow""c=1\\quad or\\quad c=-1\\quad or\\quad c\\in\\varnothing" ANSWER
"\\boxed{c=\\pm 1}"
Comments
Leave a comment