We seek the solution of the equation in the form of a power series
"y(x)= \\textstyle\\sum_{n=0}^{\\infty} a_n x^n" Then ODE:
"(x^2-1)\\sum_{n=2}^{\\infty} a_n n (n-1) x^{n-2} +3 x \\sum_{n=1}^{\\infty} a_n n x^{n-1} + x \\sum_{n=0}^{\\infty} a_n x^n = 0""\\sum_{n=2}^{\\infty} a_n n (n-1) x^n - 2a_2 -6a_3 x - \\sum_{n=2}^{\\infty} a_{n+2} (n+2) (n+1) x^n + 3a_1 x +""3 \\sum_{n=2}^{\\infty} a_n n x^n + a_0 x + \\sum_{n=2}^{\\infty} a_{n-1} x^n = 0"
"\\begin{cases}\n -2 a_2 = 0 \\\\\n -6 a_3 + 3 a_1 + a_0 = 0 \\\\\n a_n n (n-1) - a_{n+2} (n+2) (n+1) + 3 a_n n + a_{n-1} = 0, n=2,3,4...\n\\end{cases}""\\begin{cases}\n a_2 = 0 \\\\\n a_3 =\\frac {3 a_1 + a_0} 6 \\\\\n a_{n+2} = \\frac {a_n n (n+2) + a_{n-1}} {(n+2) (n+1)}, n=2,3,4...\n\\end{cases}" Answer:
"y(x) = a_0 +a_1 x + \\frac {3 a_1 + a_0} {6} x^3 + \\sum_{n=2}^{\\infty} \\frac {a_n n (n+2) + a_{n-1}} {(n+2)(n+1)} x^{n+2}"
Comments
Leave a comment