Answer to Question #86910 in Differential Equations for Swati malik

Question #86910
Solve the differential equation.
1. dy/dx=cot(y+x)-1
2. (x^2+y^2)dy/dx=xy.
1
Expert's answer
2019-03-25T12:10:29-0400

Solution:

1.If

dydx=cot(x+y)1\frac{dy}{dx}=cot(x+y)-1

then we make a replacement:

x+y=z,y=zx,dydx=dzdx1x+y=z,y=z-x,\frac{dy}{dx}=\frac{dz}{dx}-1

and have

dzdx1=cot(z)1,dzcot(z)=dx,\frac{dz}{dx}-1=cot(z)-1,\int{\frac{dz}{cot(z)}}=\int{dx},

sin(z)dzcos(z)=dx,lncos(z)=x+c,cos(z)=exc,\int{\frac{sin(z)dz}{cos(z)}}=\int{dx},-ln|cos(z)|=x+c,|cos(z)|=e^{-x-c},

cos(x+y)=exc,|cos(x+y)|=e^{-x-c},y=arccos(exc)x,π2+2πnxπ2+2πn,nZy=arccos(e^{-x-c}) -x,-\frac{\pi}{2}+2\pi n\le{x}\le{\frac{\pi}{2}}+2\pi n,n\isin{Z}

and


y=arccos(exc)x,(π2+2πnx3π+2πn2)nZ.y=arccos(-e^{-x-c}) -x,(\frac{\pi}{2}+2\pi n\le{x}\le{\frac{3\pi+2\pi n}{2}})n\isin{Z}.

2.If


(x2+y2)dydx=xy(x^2+y^2)\frac{dy}{dx}=xy

then we make a replacement:


yx=z,y=zx,dxdy=dzdxx+z\frac{y}{x}=z,y=zx,\frac{dx}{dy}=\frac{dz}{dx}x+z

and have


(x2+x2z2)(dzdxx+z)=x2z(x^2+x^2z^2)(\frac{dz}{dx}x+z)=x^2z1+z2z3dzdxx=1,(1z31z)dz=dxx,\frac{1+z^2}{-z^3}\frac{dz}{dx}x=1,\int{(-\frac{1}{z^3}-\frac{1}{z})dz}=\int{\frac{dx}{x}},

12z2lnz=lnx+lnc,x22y2lny=lnc,\frac{1}{2z^2}-ln|z|=ln|x|+ln|c|,\frac{x^2}{2y^2}-ln|y|=ln|c|,

x2=y2ln(cy)2.x^2=y^2ln(cy)^2.

Answer:1.

y=arccos(exc)x,π2+2πnxπ2+2πn,nZy=arccos(e^{-x-c}) -x,-\frac{\pi}{2}+2\pi n\le{x}\le{\frac{\pi}{2}}+2\pi n,n\isin{Z}

and


y=arccos(exc)x,(π2+2πnx3π+2πn2)nZ.y=arccos(-e^{-x-c}) -x,(\frac{\pi}{2}+2\pi n\le{x}\le{\frac{3\pi+2\pi n}{2}})n\isin{Z}.

2.

x2=y2ln(cy)2.x^2=y^2ln(cy)^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment