Solution:
1.If
"\\frac{dy}{dx}=cot(x+y)-1"then we make a replacement:
"x+y=z,y=z-x,\\frac{dy}{dx}=\\frac{dz}{dx}-1"and have
"\\frac{dz}{dx}-1=cot(z)-1,\\int{\\frac{dz}{cot(z)}}=\\int{dx},""\\int{\\frac{sin(z)dz}{cos(z)}}=\\int{dx},-ln|cos(z)|=x+c,|cos(z)|=e^{-x-c},"
"|cos(x+y)|=e^{-x-c},""y=arccos(e^{-x-c}) -x,-\\frac{\\pi}{2}+2\\pi n\\le{x}\\le{\\frac{\\pi}{2}}+2\\pi n,n\\isin{Z}"
and
2.If
then we make a replacement:
and have
"\\frac{1}{2z^2}-ln|z|=ln|x|+ln|c|,\\frac{x^2}{2y^2}-ln|y|=ln|c|,"
"x^2=y^2ln(cy)^2."
Answer:1.
"y=arccos(e^{-x-c}) -x,-\\frac{\\pi}{2}+2\\pi n\\le{x}\\le{\\frac{\\pi}{2}}+2\\pi n,n\\isin{Z}"and
2.
"x^2=y^2ln(cy)^2."
Comments
Leave a comment