Solution:
1.If
dxdy=cot(x+y)−1 then we make a replacement:
x+y=z,y=z−x,dxdy=dxdz−1 and have
dxdz−1=cot(z)−1,∫cot(z)dz=∫dx,
∫cos(z)sin(z)dz=∫dx,−ln∣cos(z)∣=x+c,∣cos(z)∣=e−x−c,
∣cos(x+y)∣=e−x−c,y=arccos(e−x−c)−x,−2π+2πn≤x≤2π+2πn,n∈Z
and
y=arccos(−e−x−c)−x,(2π+2πn≤x≤23π+2πn)n∈Z. 2.If
(x2+y2)dxdy=xy then we make a replacement:
xy=z,y=zx,dydx=dxdzx+z and have
(x2+x2z2)(dxdzx+z)=x2z−z31+z2dxdzx=1,∫(−z31−z1)dz=∫xdx,
2z21−ln∣z∣=ln∣x∣+ln∣c∣,2y2x2−ln∣y∣=ln∣c∣,
x2=y2ln(cy)2. Answer:1.
y=arccos(e−x−c)−x,−2π+2πn≤x≤2π+2πn,n∈Z and
y=arccos(−e−x−c)−x,(2π+2πn≤x≤23π+2πn)n∈Z. 2.
x2=y2ln(cy)2.
Comments
Leave a comment