Question #316650

1.At 1:00 P.M., a thermometer reading 70°F is taken outside where the air temperature is -10°F. At 1:02 P.M., the reading is 26°F. At 1:05 P.M., the thermometer is taken back indoors, where the air is at 70°F. What is the temperature reading at 1:09 P.M.?


1
Expert's answer
2022-03-31T16:58:35-0400

TtemperatrureToutoutsidedTdt=k(ToutT),T(t0)=T0T(t)=Tout+(T0Tout)ek(tt0)=[ek=A]=Tout+(T0Tout)Att0Tout=10,t0=0,T0=70,T(2)=2610+(70+10)A20=26A=3680=0.67082Att=5:T(5)=10+80A50=10+800.670825=0.867259Tout=70,t0=5,T0=0.867259T(9)=70+(0.86725970)0.6708295=56.0007T-temperatrure\\T_{out}-outside\\\frac{dT}{dt}=k\left( T_{out}-T \right) ,T\left( t_0 \right) =T_0\Rightarrow T\left( t \right) =T_{out}+\left( T_0-T_{out} \right) e^{-k\left( t-t_0 \right)}=\left[ e^{-k}=A \right] =T_{out}+\left( T_0-T_{out} \right) A^{t-t_0}\\\\T_{out}=-10, t_0=0,T_0=70,T\left( 2 \right) =26\Rightarrow -10+\left( 70+10 \right) A^{2-0}=26\Rightarrow A=\sqrt{\frac{36}{80}}=0.67082\\At\,\,t=5: T\left( 5 \right) =-10+80\cdot A^{5-0}=-10+80\cdot 0.67082^5=0.867259\\T_{out}=70,t_0=5,T_0=0.867259\Rightarrow T\left( 9 \right) =70+\left( 0.867259-70 \right) \cdot 0.67082^{9-5}=56.0007


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS