Question #316645

Substitution as suggested by the equation

sinxsinydx + cosxcosydy = 0


1
Expert's answer
2022-03-28T05:37:44-0400

sinxsinydx+cosxcosydy=0\sin x \sin y dx+\cos x \cos y dy=0

sinxcosxdx=cosysinydy\frac{\sin x }{\cos x} dx=-\frac{\cos y}{ \sin y} dy

dcosxcosx=dsinysiny-\frac{d\cos x }{\cos x}=-\frac{d\sin y}{ \sin y}

lncosx=lnsiny+lnC\ln|\cos x|=\ln|\sin y|+\ln C

cosx=Csiny\cos x=C\sin y

Answer: cosx=Csiny\cos x=C\sin y.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS