Substitution as suggested by the equation
(x + 2y − 1)dx + 3(x + 2y)dy = 0 when y(0) = 2
"(x+2*y-1)dx+3*(x+2*y)dy=0\\\\\n(x+2*y-1)dx=-3*(x+2*y)dy\\\\\nd(x^2\/2+2*y*x-x)=-3*d(x*y+y^2)\\\\\n\\int d(x^2\/2+2*y*x-x)=\\int -3*d(x*y+y^2)\\\\\nx^2\/2+2*y*x-x=-3*x*y-3y^2+C\\\\\nx^2+4*y*x-2*x+6*x*y+6*y^2+C=0\\\\\nx^2+10*y*x+6*y^2-2*x+C=0\\\\"
when x=0, y=2 =>
"0^2+10*2*0+6*2^2-2*0+C=0\\\\\n24+C=0\\\\\nC=-24"
Answer:
"x^2+10*y*x+6*y^2-2*x-24=0\\\\\nx^2+10*y*x+6*y^2-2*x=24\\\\"
Comments
Leave a comment