Answer to Question #316133 in Differential Equations for sandip

Question #316133

Use method of undetermined coefficients method to solve the following

y''+y=5xsinx,y(0)=0,y'(0)=1


1
Expert's answer
2022-03-24T15:21:35-0400

y''+y=5xsinx,y(0)=0,y'(0)=1

The solutions to a nonhomogeneous equation are of the form

y(x)=yc(x)+yp(x)y(x) = y_c(x) + y_p(x) ,

where ycy_c is the general solution to the associated homogeneous equation and ypy_p is a particular solution.

The associated homogeneous equation:

y+y=0y''+y=0

The general solution of this equation is determined by the roots of the characteristic equation:

λ2+1=0\lambda^2+1=0

λ=±i\lambda=\pm i , where i=1i=\sqrt{-1} .

yc(x)=c1cosx+c2sinxy_c(x)=c_1\cos{x}+c_2\sin{x} .

The particular solution of the differential equation:

yp(x)=x((Ax+B)sinx+(Cx+D)cosx)y_p(x)=x((Ax+B)\sin{x}+(Cx+D)\cos{x})

yp=(2Ax+BCx2Dx)sinx+y_p'=(2 A x + B - C x^2 - D x)\sin{x} +(Ax2+Bx+2Cx+D)cosx(A x^2 + B x + 2 C x + D)\cos{x}

yp=(Ax2+2ABx4Cx2D)sinx+y_p''= (-A x^2 + 2 A - B x - 4 C x - 2 D)\sin{x} +(4Ax+2BCx2+2CDx)cosx(4 A x + 2 B - C x^2 + 2 C - D x)\cos{x}

Now put these into the original differential equation to get:

(Ax2+2ABx4Cx2D)sinx+(-A x^2 + 2 A - B x - 4 C x - 2 D)\sin{x} +(4Ax+2BCx2+2CDx)cosx+(4 A x + 2 B - C x^2 + 2 C - D x)\cos{x} +x((Ax+B)sinx+(Cx+D)cosx)=x((Ax+B)\sin{x}+(Cx+D)\cos{x})=5xsinx5x\sin{x}

Equating coefficients, we get

A=0A=0; D=0D=0; C=54C=-\frac54; B=54B=\frac54.

yp(x)=54x(sinxxcosx)y_p(x)=\frac54x(\sin{x}-x\cos{x})

y=c1cosx+c2sinx+54x(sinxxcosx)y=c_1\cos{x}+c_2\sin{x}+\frac54x(\sin{x}-x\cos{x})

y(0)=c1=0y(0)=c_1=0

y(0)=c2=1y’(0)=c_2=1

Answer:

y=sinx+54x(sinxxcosx)y=\sin{x}+\frac54x(\sin{x}-x\cos{x}) .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment