Use method of undetermined coefficients method to solve the following
y''+y=5xsinx,y(0)=0,y'(0)=1
y''+y=5xsinx,y(0)=0,y'(0)=1
The solutions to a nonhomogeneous equation are of the form
"y(x) = y_c(x) + y_p(x)" ,
where "y_c" is the general solution to the associated homogeneous equation and "y_p" is a particular solution.
The associated homogeneous equation:
"y''+y=0"
The general solution of this equation is determined by the roots of the characteristic equation:
"\\lambda^2+1=0"
"\\lambda=\\pm i" , where "i=\\sqrt{-1}" .
"y_c(x)=c_1\\cos{x}+c_2\\sin{x}" .
The particular solution of the differential equation:
"y_p(x)=x((Ax+B)\\sin{x}+(Cx+D)\\cos{x})"
"y_p'=(2 A x + B - C x^2 - D x)\\sin{x} +""(A x^2 + B x + 2 C x + D)\\cos{x}"
"y_p''= (-A x^2 + 2 A - B x - 4 C x - 2 D)\\sin{x} +""(4 A x + 2 B - C x^2 + 2 C - D x)\\cos{x}"
Now put these into the original differential equation to get:
"(-A x^2 + 2 A - B x - 4 C x - 2 D)\\sin{x} +""(4 A x + 2 B - C x^2 + 2 C - D x)\\cos{x} +""x((Ax+B)\\sin{x}+(Cx+D)\\cos{x})=""5x\\sin{x}"
Equating coefficients, we get
"A=0"; "D=0"; "C=-\\frac54"; "B=\\frac54".
"y_p(x)=\\frac54x(\\sin{x}-x\\cos{x})"
"y=c_1\\cos{x}+c_2\\sin{x}+\\frac54x(\\sin{x}-x\\cos{x})"
"y(0)=c_1=0"
"y\u2019(0)=c_2=1"
Answer:
"y=\\sin{x}+\\frac54x(\\sin{x}-x\\cos{x})" .
Comments
Leave a comment