The auxiliary equations is:
2y(zβ3)dxβ=y(2xβz)dyβ=y(2xβ3)dzβ
A first characteristic equation comes from
2y(zβ3)dxβ=y(2xβ3)dzβ
(2xβ3)dx=2(zβ3)dz
x2β3x+49β=z2β6z+9+C1β
(xβ23β)2=(zβ3)2+C1β
C1β=(xβ23β)2β(zβ3)2
A second characteristic equation comes from
y(2xβ3β2x+z)dzβdyβ=2y(zβ3)dxβ
2d(zβy)=dx
2(zβy)=x+C2β
C2β=2zβ2yβx.
General solution of the PDE on the form of implicit equation:
Ξ¦(C1β,C2β)=0
Comments
Leave a comment