Answer to Question #315713 in Differential Equations for Davey

Question #315713

dy/dx= y(xy^(5) − 1)

1
Expert's answer
2022-03-22T18:40:11-0400

y=y(xy51)=xy6yy’=y(xy^5-1)=xy^6-y

z=y5z=y^{-5}

y=15z65zy’=-\frac15z^{-\frac65}z’

15z65z=xz65z15-\frac15z^{-\frac65}z’=x z^{-\frac65}-z^{-\frac15}

z5z=5xz’-5z=-5x

z=uvz=uv

uv+uv5uv=5xu’v+uv’-5uv=-5x

uv+u(v5v)=5xu’v+u(v’-5v)=-5x

v5v=0v’-5v=0

v=e5xv=e^{5x}

ue5x=5xu’e^{5x}=-5x

u=5xe5xdx=15e5x(5x+1)+Cu=-\int 5xe^{-5x}dx=\frac15e^{-5x}(5x+1)+C

z=uv=x+15+Ce5x=y5z=uv=x+\frac15+Ce^{5x}=y^{-5}

y=(x+15+Ce5x)15y=(x+\frac15+Ce^{5x})^{-\frac15}

Answer: y=(x+15+Ce5x)15y=(x+\frac15+Ce^{5x})^{-\frac15}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment