dy/dx= y(xy^(5) − 1)
y’=y(xy5−1)=xy6−yy’=y(xy^5-1)=xy^6-yy’=y(xy5−1)=xy6−y
z=y−5z=y^{-5}z=y−5
y’=−15z−65z’y’=-\frac15z^{-\frac65}z’y’=−51z−56z’
−15z−65z’=xz−65−z−15-\frac15z^{-\frac65}z’=x z^{-\frac65}-z^{-\frac15}−51z−56z’=xz−56−z−51
z’−5z=−5xz’-5z=-5xz’−5z=−5x
z=uvz=uvz=uv
u’v+uv’−5uv=−5xu’v+uv’-5uv=-5xu’v+uv’−5uv=−5x
u’v+u(v’−5v)=−5xu’v+u(v’-5v)=-5xu’v+u(v’−5v)=−5x
v’−5v=0v’-5v=0v’−5v=0
v=e5xv=e^{5x}v=e5x
u’e5x=−5xu’e^{5x}=-5xu’e5x=−5x
u=−∫5xe−5xdx=15e−5x(5x+1)+Cu=-\int 5xe^{-5x}dx=\frac15e^{-5x}(5x+1)+Cu=−∫5xe−5xdx=51e−5x(5x+1)+C
z=uv=x+15+Ce5x=y−5z=uv=x+\frac15+Ce^{5x}=y^{-5}z=uv=x+51+Ce5x=y−5
y=(x+15+Ce5x)−15y=(x+\frac15+Ce^{5x})^{-\frac15}y=(x+51+Ce5x)−51
Answer: y=(x+15+Ce5x)−15y=(x+\frac15+Ce^{5x})^{-\frac15}y=(x+51+Ce5x)−51.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment