Form the PDE of the following by eliminating arbitrary functions
phi(z^2-xy,x/z)
"\\Phi(z^2-xy,x\/z)=0" (1)
We set "u=z^2-xy"; "v=\\frac xz".
Then the operator d on (1) leads to:
"\\displaystyle d\\Phi(u,v)=\\frac{\\partial \\Phi(u,v)}{\\partial u}du+\\frac{\\partial \\Phi(u,v)}{\\partial v}dv"=0.
Thus
"0=du=d(z^2-xy)" (3)
"0=dv=d(\\frac{x}{z})" (4)
From (3) and (4) we have:
"2zdz-ydx-xdy=0"
"\\displaystyle \\frac1zdx-\\frac{x}{z^2}dz=0"
Thus getting rid of dx we obtain:
"\\displaystyle dx=\\frac xzdz"
"\\displaystyle (2z-y\\frac xz)dz=xdy"
"\\displaystyle dz=\\frac {dy}{\\frac{2z^2-yx}{xz}}=\\frac{dx}{\\frac{x^2}{xz}}"
"\\displaystyle \\frac{dz}{xz}=\\frac {dy}{2z^2-yx}=\\frac{dx}{x^2}"
Finally we obtain the desired PDE for "z(x,y)":
"\\displaystyle x^2\\frac{\\partial z}{\\partial x}+(2z^2-xy)\\frac{\\partial z}{\\partial y}=xz"
Answer: "\\displaystyle x^2\\frac{\\partial z}{\\partial x}+(2z^2-xy)\\frac{\\partial z}{\\partial y}=xz".
Comments
Leave a comment