Integrating factors found by inspection
y(x^2 y^2 − 1)dx + x(x^2 y^2 + 1)dy = 0
y(x2+y2−1)dx+x(x2+y2+1)dy=0(x2y+y3−y)dx+(x3+xy2+x)dy=0x2ydx+y3dx−ydx+x3dy+xy2dy+xdy=0x2(ydx+xdy)+y2(ydx+xdy)+xdy−ydx=0[(ydx+xdy)(x2+y2)+xdy−ydx=0]1x2+y2ydx+xdy+xdy−ydxx2+y2=0d(xy)+d(arctan(yx))=0∫d(xy)+∫d(arctan(yx))=∫0xy+arctanyx=cy(x^2 + y^2 − 1)dx + x(x^2 + y^2 + 1)dy = 0\\ (x^2y + y^3 − y)dx + (x^3 + xy^2 + x)dy = 0\\ x^2ydx + y^3dx − ydx + x^3dy + xy^2dy + xdy = 0\\ x^2(ydx+xdy)+y^2(ydx+xdy)+xdy-ydx=0\\ \left[(ydx+xdy)(x^2+y^2)+xdy-ydx =0\right]\frac{1}{x^2+y^2}\\ ydx+xdy+ \frac{xdy-ydx}{x^2+y^2}=0\\ d(xy)+d(\arctan (\tfrac{y}{x}))=0\\ \int d(xy)+ \int d(\arctan (\tfrac{y}{x}))= \int 0\\ xy+ \arctan \tfrac{y}{x}= cy(x2+y2−1)dx+x(x2+y2+1)dy=0(x2y+y3−y)dx+(x3+xy2+x)dy=0x2ydx+y3dx−ydx+x3dy+xy2dy+xdy=0x2(ydx+xdy)+y2(ydx+xdy)+xdy−ydx=0[(ydx+xdy)(x2+y2)+xdy−ydx=0]x2+y21ydx+xdy+x2+y2xdy−ydx=0d(xy)+d(arctan(xy))=0∫d(xy)+∫d(arctan(xy))=∫0xy+arctanxy=c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments