y(x2+y2−1)dx+x(x2+y2+1)dy=0(x2y+y3−y)dx+(x3+xy2+x)dy=0x2ydx+y3dx−ydx+x3dy+xy2dy+xdy=0x2(ydx+xdy)+y2(ydx+xdy)+xdy−ydx=0[(ydx+xdy)(x2+y2)+xdy−ydx=0]x2+y21ydx+xdy+x2+y2xdy−ydx=0d(xy)+d(arctan(xy))=0
integrating through, we have:
xy+arctan(xy)=C
When y(1) = 0,
(1)(0)+arctan(10)=C0+0=C⟹C=0∴xy+arctan(xy)=0
Comments
Leave a comment