Answer to Question #316640 in Differential Equations for Tobias Felix

Question #316640

Integrating factors found by inspection

y(x^2 + y^2 − 1)dx + x(x^2 + y^2 + 1)dy = 0 when y(1) = 0


1
Expert's answer
2022-03-24T18:46:03-0400

y(x2+y21)dx+x(x2+y2+1)dy=0(x2y+y3y)dx+(x3+xy2+x)dy=0x2ydx+y3dxydx+x3dy+xy2dy+xdy=0x2(ydx+xdy)+y2(ydx+xdy)+xdyydx=0[(ydx+xdy)(x2+y2)+xdyydx=0]1x2+y2ydx+xdy+xdyydxx2+y2=0d(xy)+d(arctan(yx))=0y(x^2 + y^2 − 1)dx + x(x^2 + y^2 + 1)dy = 0\\ (x^2y + y^3 − y)dx + (x^3 + xy^2 + x)dy = 0\\ x^2ydx + y^3dx − ydx + x^3dy + xy^2dy + xdy = 0\\ x^2(ydx+xdy)+y^2(ydx+xdy)+xdy-ydx=0\\ \left[(ydx+xdy)(x^2+y^2)+xdy-ydx =0\right]\frac{1}{x^2+y^2}\\ ydx+xdy+ \frac{xdy-ydx}{x^2+y^2}=0\\ d(xy)+d(\arctan (\tfrac{y}{x}))=0\\


integrating through, we have:

xy+arctan(yx)=Cxy+ \arctan (\tfrac{y}{x})=C


When y(1) = 0,

(1)(0)+arctan(01)=C0+0=C    C=0xy+arctan(yx)=0(1)(0) + \arctan (\tfrac{0}{1}) =C\\ 0+0=C \implies C=0\\[6mm] \therefore xy+ \arctan (\tfrac{y}{x})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment