Integrating factors found by inspection
y(x^2 + y^2 β 1)dx + x(x^2 + y^2 + 1)dy = 0 when y(1) = 0
"y(x^2 + y^2 \u2212 1)dx + x(x^2 + y^2 + 1)dy = 0\\\\\n(x^2y + y^3 \u2212 y)dx + (x^3 + xy^2 + x)dy = 0\\\\\nx^2ydx + y^3dx \u2212 ydx + x^3dy + xy^2dy + xdy = 0\\\\\nx^2(ydx+xdy)+y^2(ydx+xdy)+xdy-ydx=0\\\\\n\\left[(ydx+xdy)(x^2+y^2)+xdy-ydx =0\\right]\\frac{1}{x^2+y^2}\\\\\nydx+xdy+ \\frac{xdy-ydx}{x^2+y^2}=0\\\\\nd(xy)+d(\\arctan (\\tfrac{y}{x}))=0\\\\"
integrating through, we have:
"xy+ \\arctan (\\tfrac{y}{x})=C"
When y(1) = 0,
"(1)(0) + \\arctan (\\tfrac{0}{1}) =C\\\\\n0+0=C \\implies C=0\\\\[6mm]\n\\therefore xy+ \\arctan (\\tfrac{y}{x})=0"
Comments
Leave a comment