Bernoulli’s Equation
(y^4 − 2xy)dx + 3x^2 dy = 0 when y(1)=0
"(y^4 \u2212 2xy)dx + 3x^2 dy = 0" "y(1)=0"
"3x^2\\frac{dy}{dx}-2xy=-y^4"
"u=y^{-3}"
"y'=-\\frac13u^{-\\frac43}u'"
"-3x^2\\frac13u^{-\\frac43}u'-2xu^{-\\frac13}=-u^{-\\frac43}"
"x^2u'+2xu=1"
"u'+2\\frac {u}{x}=\\frac{1}{x^2}" (1)
Let’s solve the following equation
"u'+2\\frac {u}{x}=0"
"\\frac {du}{u}=-2\\frac{dx}{x}"
"u=C(x)x^{-2}"
To find solution of the equation (1) we should think C is a function of x
"u'=C'x^{-2}-2Cx^{-3}"
Substitution u and u’ into (1) gives
"C'x^{-2}-2Cx^{-3}+2C(x)x^{-3}=\\frac{1}{x^2}"
"C'=1"
"C=x+C_1"
"y^{-3}=u=\\frac{(x+C_1)}{x^2}"
"y=(\\frac{x^2}{x+C_1})^{\\frac13}= (\\frac{C_2x^2}{C_2x+1})^{\\frac13}"
"y(1)=(\\frac{C_2}{C_2+1})^{\\frac13}=0"
"C_2=0"
"y=0" .
Answer: "y=0"
Comments
Leave a comment