Answer to Question #316647 in Differential Equations for Tobias Felix

Question #316647

Bernoulli’s Equation

(y^4 − 2xy)dx + 3x^2 dy = 0 when y(1)=0


1
Expert's answer
2022-03-29T17:26:19-0400

(y42xy)dx+3x2dy=0(y^4 − 2xy)dx + 3x^2 dy = 0 y(1)=0y(1)=0

3x2dydx2xy=y43x^2\frac{dy}{dx}-2xy=-y^4

u=y3u=y^{-3}

y=13u43uy'=-\frac13u^{-\frac43}u'

3x213u43u2xu13=u43-3x^2\frac13u^{-\frac43}u'-2xu^{-\frac13}=-u^{-\frac43}

x2u+2xu=1x^2u'+2xu=1

u+2ux=1x2u'+2\frac {u}{x}=\frac{1}{x^2} (1)

Let’s solve the following equation

u+2ux=0u'+2\frac {u}{x}=0

duu=2dxx\frac {du}{u}=-2\frac{dx}{x}

u=C(x)x2u=C(x)x^{-2}

To find solution of the equation (1) we should think C is a function of x

u=Cx22Cx3u'=C'x^{-2}-2Cx^{-3}

Substitution u and u’ into (1) gives

Cx22Cx3+2C(x)x3=1x2C'x^{-2}-2Cx^{-3}+2C(x)x^{-3}=\frac{1}{x^2}

C=1C'=1

C=x+C1C=x+C_1

y3=u=(x+C1)x2y^{-3}=u=\frac{(x+C_1)}{x^2}

y=(x2x+C1)13=(C2x2C2x+1)13y=(\frac{x^2}{x+C_1})^{\frac13}= (\frac{C_2x^2}{C_2x+1})^{\frac13}

y(1)=(C2C2+1)13=0y(1)=(\frac{C_2}{C_2+1})^{\frac13}=0

C2=0C_2=0

y=0y=0 .

Answer: y=0y=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment