(y4−2xy)dx+3x2dy=0 y(1)=0
3x2dxdy−2xy=−y4
u=y−3
y′=−31u−34u′
−3x231u−34u′−2xu−31=−u−34
x2u′+2xu=1
u′+2xu=x21 (1)
Let’s solve the following equation
u′+2xu=0
udu=−2xdx
u=C(x)x−2
To find solution of the equation (1) we should think C is a function of x
u′=C′x−2−2Cx−3
Substitution u and u’ into (1) gives
C′x−2−2Cx−3+2C(x)x−3=x21
C′=1
C=x+C1
y−3=u=x2(x+C1)
y=(x+C1x2)31=(C2x+1C2x2)31
y(1)=(C2+1C2)31=0
C2=0
y=0 .
Answer: y=0
Comments
Leave a comment