Question #302577

Find the general solution of the following differential equations using method of undetermined coefficients: (ii) y''−2y'+y =20e^xsinx,


1
Expert's answer
2022-03-02T09:31:17-0500

Corresponding homogeneous differential equation


y2y+y=0y''−2y'+y =0

Characteristic (auxiliary) equation


r22r+1=0r^2-2r+1=0

r1=r2=1r_1=r_2=1

The general solution of the homogeneous differential equation is


yh=c1ex+c2xexy_h=c_1e^x+c_2xe^x

Find the particular solution of the non homogeneous differential equation


yp=Aexcosx+Bexsinxy_p=Ae^{x}\cos x+Be^x\sin x

yp=AexcosxAexsinx+Bexsinx+Bexcosxy_p'=Ae^x\cos x-Ae^x\sin x+Be^x\sin x+Be^x\cos x

yp=Aexcosx2AexsinxAexcosxy_p''=Ae^{x}\cos x-2Ae^x\sin x-Ae^{x}\cos x

+Bexsinx+2BexcosxBexsinx+Be^x\sin x+2Be^x\cos x-Be^x\sin x


Substitute


2Aexsinx+2Bexcosx2Aexcosx-2Ae^x\sin x+2Be^x\cos x-2Ae^x\cos x

+2Aexsinx2Bexsinx2Bexcosx+2Ae^x\sin x-2Be^x\sin x-2Be^x\cos x

+Aexcosx+Bexsinx=20exsinx+Ae^{x}\cos x+Be^x\sin x=20e^x\sin x

A=0A=0

B=20B=-20

The general solution of the non homogeneous differential equation is


y=c1ex+c2xex20exsinxy=c_1e^x+c_2xe^x-20e^x\sin x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS