Corresponding homogeneous differential equation
y′′−2y′+y=0 Characteristic (auxiliary) equation
r2−2r+1=0
r1=r2=1 The general solution of the homogeneous differential equation is
yh=c1ex+c2xex Find the particular solution of the non homogeneous differential equation
yp=Aexcosx+Bexsinx
yp′=Aexcosx−Aexsinx+Bexsinx+Bexcosx
yp′′=Aexcosx−2Aexsinx−Aexcosx
+Bexsinx+2Bexcosx−Bexsinx
Substitute
−2Aexsinx+2Bexcosx−2Aexcosx
+2Aexsinx−2Bexsinx−2Bexcosx
+Aexcosx+Bexsinx=20exsinx
A=0
B=−20 The general solution of the non homogeneous differential equation is
y=c1ex+c2xex−20exsinx
Comments