Answer to Question #302575 in Differential Equations for haru

Question #302575

Solve the following initial value problems using method of undetermined coefficients: (i) y''−9y = ex+x−1, y(0) = −1,y'(0) = 1,


1
Expert's answer
2022-02-28T17:46:50-0500

Correponding homogeneous differential equation


y9y=0y''-9y=0

Characteristic (auxiliary) equation


r29=0r^2-9=0

r1=3,r2=3r_1=3, r_2=-3

The general solution of the homogeneous differential equation is


yh=c1e3x+c2e3xy_h=c_1e^{3x}+c_2e^{-3x}

Find the particular solution of the non homogeneous differential equation


yp=Aex+Bx+Cy_p=Ae^x+Bx+C

yp=Aex+By_p'=Ae^x+B

yp=Aexy_p''=Ae^x

Substitute


Aex9Aex9Bx9C=ex+x1Ae^x-9Ae^x-9Bx-9C=e^x+x-1

A=1/8A=-1/8

B=1/9B=-1/9

C=1/9C=1/9

The general solution of the non homogeneous differential equation is


y=c1e3x+c2e3x18ex19x+19y=c_1e^{3x}+c_2e^{-3x}-\dfrac{1}{8}e^x-\dfrac{1}{9}x+\dfrac{1}{9}

y(0)=1,y(0)=1y'(0) = −1,y(0) = 1


3c13c21819=13c_1-3c_2-\dfrac{1}{8}-\dfrac{1}{9}=-1

c1+c218+19=1c_1+c_2-\dfrac{1}{8}+\dfrac{1}{9}=1

c2=7372c1c_2=\dfrac{73}{72}-c_1

6c121972=55726c_1-\dfrac{219}{72}=-\dfrac{55}{72}

c1=82216c_1=\dfrac{82}{216}


c2=137216c_2=\dfrac{137}{216}

The solution of the given IVP is


y=82216e3x+137216e3x18ex19x+19y=\dfrac{82}{216}e^{3x}+\dfrac{137}{216}e^{-3x}-\dfrac{1}{8}e^x-\dfrac{1}{9}x+\dfrac{1}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment