Answer to Question #302571 in Differential Equations for haru

Question #302571

Use variation of parameter methods to find the particular solution of xy−(x+1)y+y = x2, given that y1(x) = ex and y2(x) = x + 1 form a fundamental set of solutions for the corresponding homogeneous differential equation.


1
Expert's answer
2022-02-28T11:56:18-0500
xy(x+1)y+y=x2xy''-(x+1)y'+y=x^2

y=c1ex+c2(x+1)y=c_1e^x+c_2(x+1)

y=c1ex+c1ex+c2+c2(x+1)y'=c_1e^x+c_1'e^x+c_2+c_2'(x+1)

Let c1ex+c2(x+1)=0.c_1'e^x+c_2'(x+1)=0. Then


y=c1ex+c2y'=c_1e^x+c_2

y=c1ex+c1ex+c2y''=c_1e^x+c_1'e^x+c_2'

Substitute


c1xex+c1xex+c2x(x+1)(c1ex+c2)c_1xe^x+c_1'xe^x+c_2'x-(x+1)(c_1e^x+c_2)

+c1ex+c2(x+1)=x2+c_1e^x+c_2(x+1)=x^2

c1xex+c2x=x2c_1'xe^x+c_2'x=x^2

We have


c1ex+c2(x+1)=0c_1'e^x+c_2'(x+1)=0

c1xex+c2x=x2c_1'xe^x+c_2'x=x^2


c1ex=c2(x+1)c_1'e^x=-c_2'(x+1)

c2x(x+1)+c2x=x2-c_2'x(x+1)+c_2'x=x^2

c2=1c_2'=-1

c1=ex(x+1)c_1'=e^{-x}(x+1)

Then we can take


c1=(x+1)exex=(x+2)exc_1=−(x+1)e^{-x}-e^{-x}=−(x+2)e^{-x}

c2=xc_2=-x

The particular solution is


yp=x2x2xy_p=-x-2-x^2-x

yp=x22x2y_p=-x^2-2x-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment