Answer to Question #301669 in Differential Equations for Madhumita

Question #301669

The given differential equation (1-6y^2-3x^2y)

1
Expert's answer
2022-02-24T05:57:49-0500

Given problem is incomplete.

Assume, we need to solve: (4x -6y-1) dx + (3x –2y-2) dy = 0

Solution:

Let us solve the differential equation (4x6y1)dx+(3x2y2)dy=0.(4x -6y-1) dx + (3x -2y-2) dy = 0.

Let us use the transformation x=u+1, y=v+12.x=u+1,\ y=v+\frac{1}{2}. Then we have the equation

(4u6v)du+(3u2v)dv=0.(4u -6v) du + (3u -2v) dv = 0.

Let u=tv,u=tv, then t=uv=x1y12=2x22y1.t=\frac{u}{v}=\frac{x-1}{y-\frac{1}2}=\frac{2x-2}{2y-1}.

It follows that du=tdv+vdt,du=tdv+vdt, and hence

(4tv6v)(tdv+vdt)+(3tv2v)dv=0.(4tv -6v) (tdv+vdt) + (3tv –2v) dv = 0.

Then after dividing by vv we get the equation

(4t6)(tdv+vdt)+(3t2)dv=0(4t -6) (tdv+vdt) + (3t –2) dv = 0 or (4t6)vdt+(4t23t2)dv=0.(4t -6) vdt + (4t^2-3t -2) dv = 0.

it follows that

dvv=(4t6)dt4t23t2=12(8t12)dt4t23t2=12(8t3)dt4t23t2+92dt4(t234t12)=12d(4t23t2)4t23t2+98dt(t38)24164.\frac{dv}{v}=-\frac{(4t -6)dt}{4t^2-3t -2} =-\frac{1}2\frac{(8t - 12)dt}{4t^2-3t -2} =-\frac{1}2\frac{(8t - 3)dt}{4t^2-3t -2} +\frac{9}2\frac{dt}{4(t^2-\frac{3}4t -\frac{1}2)} =-\frac{1}2\frac{d(4t^2-3t -2)}{4t^2-3t -2} +\frac{9}8\frac{dt}{(t-\frac{3}8)^2 -\frac{41}{64}}.

Therefore,

dvv=12d(4t23t2)4t23t2+98dt(t38)24164\int\frac{dv}{v}=-\frac{1}2\int\frac{d(4t^2-3t -2)}{4t^2-3t -2} +\frac{9}8\int\frac{dt}{(t-\frac{3}8)^2 -\frac{41}{64}}

We conclude that

lnv=12ln4t23t2+9812418lnt38418t38+418+C,\ln|v|=-\frac{1}2\ln|4t^2-3t-2|+\frac{9}8\frac{1}{2\frac{\sqrt{41}}{8}}\ln|\frac{t-\frac{3}8-\frac{\sqrt{41}}{8}}{t-\frac{3}8+\frac{\sqrt{41}}{8}}|+C,

and hence the general solution is

lny12=12ln4(2x22y1)23(2x22y1)2+9241ln2x22y1384182x22y138+418+C.\ln|y-\frac{1}2|=-\frac{1}2\ln|4(\frac{2x-2}{2y-1})^2-3(\frac{2x-2}{2y-1})-2|+\frac{9}{2\sqrt{41}}\ln|\frac{\frac{2x-2}{2y-1}-\frac{3}8-\frac{\sqrt{41}}{8}}{\frac{2x-2}{2y-1}-\frac{3}8+\frac{\sqrt{41}}{8}}|+C.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment