Answer to Question #300868 in Differential Equations for Cross

Question #300868

dy/dx+ycotx=5ecosx

1
Expert's answer
2022-02-22T22:43:41-0500

Integrating factor


μ(x)=ecotxdx=eln(sinx)=sinx\mu(x)=e^{\int\cot xdx}=e^{\ln (\sin x)}=\sin x

cotxdx=cosxsinxdx=ln(sinx)+C\int \cot xdx=\int\dfrac{\cos x}{\sin x}dx=\ln(|\sin x|)+C

ysinx+ycosx=5ecosxsinxy'\sin x+y\cos x=5e^{\cos x}\sin x

d(ysinx)=5ecosxsinxdxd(y\sin x)=5e^{\cos x}\sin xdx

Integrate


d(ysinx)=5ecosxsinxdx\int d(y\sin x)=\int 5e^{\cos x}\sin xdx

ysinx=5ecosx+Cy\sin x=-5e^{\cos x}+C

y=5ecosxcscx+Ccscxy=-5e^{\cos x}\csc x+C\csc x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment