Answer to Question #300350 in Differential Equations for raji

Question #300350

Show that y= c1ex + c2e2x is the general solution of y’’-3y’+2y=0 on any interval, and find the particular solution for which y(0)=-1 and y’(0)=1


1
Expert's answer
2022-02-21T16:32:27-0500

Given:

y=c1ex+c2e2xy= c_1e^x + c_2e^{2x}


y=c1ex+2c2e2xy'= c_1e^x + 2c_2e^{2x}

y=c1ex+4c2e2xy''= c_1e^x + 4c_2e^{2x}

Then


y3y+2y==(c1ex+4c2e2x)3(c1ex+2c2e2x)++2(c1ex+c2e2x)=0y''-3y'+2y=\\ =(c_1e^x + 4c_2e^{2x})-3( c_1e^x + 2c_2e^{2x})+\\ +2( c_1e^x + c_2e^{2x})=0

The initial conditions gives

y(0)=c1+c2=1y(0)= c_1 + c_2=-1

y(0)=c1+2c2=0y'(0)= c_1 +2 c_2=0

Finally

y=2ex+e2xy=-2e^x+e^{2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment