Show that y= c1ex + c2e2x is the general solution of y’’-3y’+2y=0 on any interval, and find the particular solution for which y(0)=-1 and y’(0)=1
Given:
"y= c_1e^x + c_2e^{2x}"
"y'= c_1e^x + 2c_2e^{2x}"
"y''= c_1e^x + 4c_2e^{2x}"
Then
The initial conditions gives
"y(0)= c_1 + c_2=-1""y'(0)= c_1 +2 c_2=0"
Finally
"y=-2e^x+e^{2x}"
Comments
Leave a comment