Question #300201

Show that the coefficients of the given differential equation are homogeneous and solve the given differential equation: ydx+(x+xy)dy=0-ydx+(x+√xy)dy=0


1
Expert's answer
2022-02-21T16:19:16-0500

ydx+(x+xy)dy=0(x+xy)dy=ydxy=yx+xyf(x,y)f(tx,ty)=tytx+txty==tyt(x+xy)=yx+xy=f(x,y)y=xz(x),y=xz+zxz+z=xzx+xxzxz+z=z1+zxz=z1+zzxz=zz1+z1+zzzdz=dxx(1z32+1z)dz=dxx2z12+lnz=lnxlnC2z12lnz=lnx+lnCe2z12z=xC-ydx+(x+\sqrt{xy})dy=0\\ (x+\sqrt{xy})dy=ydx\\ y'=\frac{y}{x+\sqrt{xy}} \equiv f(x,y)\\ f(tx,ty)=\frac{ty}{tx+\sqrt{tx\cdot ty}}=\\ =\frac{ty}{t(x+\sqrt{x y})}=\frac{y}{x+\sqrt{xy}}=f(x,y)\\ y=x\cdot z(x), y'=x\cdot z'+z\\ xz'+z=\frac{xz}{x+\sqrt{x\cdot xz}}\\ xz'+z=\frac{z}{1+\sqrt{z}}\\ xz'=\frac{z}{1+\sqrt{z}}-z\\ xz'=\frac{-z\cdot\sqrt{z}}{1+\sqrt{z}}\\ \frac{1+\sqrt{z}}{z\cdot\sqrt{z}}dz=-\frac{dx}{x}\\ \int(\frac{1}{z^{\frac{3}{2}}}+\frac{1}{z})dz=-\int\frac{dx}{x}\\ -2 z^{-\frac{1}{2}}+\ln|z|=-\ln|x|-\ln|C|\\ 2 z^{-\frac{1}{2}}-\ln|z|=\ln|x|+\ln|C|\\ \frac{e^{2z^{-\frac{1}{2}}}}{z}=x\cdot C

return to y

e2(yx)12yx=xCe2(yx)12=Cy.\frac{e^{2(\frac{y}{x})^{-\frac{1}{2}}}}{\frac{y}{x}}=x\cdot C\\ e^{2(\frac{y}{x})^{-\frac{1}{2}}}=Cy.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS