− y d x + ( x + x y ) d y = 0 ( x + x y ) d y = y d x y ′ = y x + x y ≡ f ( x , y ) f ( t x , t y ) = t y t x + t x ⋅ t y = = t y t ( x + x y ) = y x + x y = f ( x , y ) y = x ⋅ z ( x ) , y ′ = x ⋅ z ′ + z x z ′ + z = x z x + x ⋅ x z x z ′ + z = z 1 + z x z ′ = z 1 + z − z x z ′ = − z ⋅ z 1 + z 1 + z z ⋅ z d z = − d x x ∫ ( 1 z 3 2 + 1 z ) d z = − ∫ d x x − 2 z − 1 2 + ln ∣ z ∣ = − ln ∣ x ∣ − ln ∣ C ∣ 2 z − 1 2 − ln ∣ z ∣ = ln ∣ x ∣ + ln ∣ C ∣ e 2 z − 1 2 z = x ⋅ C -ydx+(x+\sqrt{xy})dy=0\\
(x+\sqrt{xy})dy=ydx\\
y'=\frac{y}{x+\sqrt{xy}} \equiv f(x,y)\\
f(tx,ty)=\frac{ty}{tx+\sqrt{tx\cdot ty}}=\\
=\frac{ty}{t(x+\sqrt{x y})}=\frac{y}{x+\sqrt{xy}}=f(x,y)\\
y=x\cdot z(x), y'=x\cdot z'+z\\
xz'+z=\frac{xz}{x+\sqrt{x\cdot xz}}\\
xz'+z=\frac{z}{1+\sqrt{z}}\\
xz'=\frac{z}{1+\sqrt{z}}-z\\
xz'=\frac{-z\cdot\sqrt{z}}{1+\sqrt{z}}\\
\frac{1+\sqrt{z}}{z\cdot\sqrt{z}}dz=-\frac{dx}{x}\\
\int(\frac{1}{z^{\frac{3}{2}}}+\frac{1}{z})dz=-\int\frac{dx}{x}\\
-2 z^{-\frac{1}{2}}+\ln|z|=-\ln|x|-\ln|C|\\
2 z^{-\frac{1}{2}}-\ln|z|=\ln|x|+\ln|C|\\
\frac{e^{2z^{-\frac{1}{2}}}}{z}=x\cdot C − y d x + ( x + x y ) d y = 0 ( x + x y ) d y = y d x y ′ = x + x y y ≡ f ( x , y ) f ( t x , t y ) = t x + t x ⋅ t y t y = = t ( x + x y ) t y = x + x y y = f ( x , y ) y = x ⋅ z ( x ) , y ′ = x ⋅ z ′ + z x z ′ + z = x + x ⋅ x z x z x z ′ + z = 1 + z z x z ′ = 1 + z z − z x z ′ = 1 + z − z ⋅ z z ⋅ z 1 + z d z = − x d x ∫ ( z 2 3 1 + z 1 ) d z = − ∫ x d x − 2 z − 2 1 + ln ∣ z ∣ = − ln ∣ x ∣ − ln ∣ C ∣ 2 z − 2 1 − ln ∣ z ∣ = ln ∣ x ∣ + ln ∣ C ∣ z e 2 z − 2 1 = x ⋅ C
return to y
e 2 ( y x ) − 1 2 y x = x ⋅ C e 2 ( y x ) − 1 2 = C y . \frac{e^{2(\frac{y}{x})^{-\frac{1}{2}}}}{\frac{y}{x}}=x\cdot C\\
e^{2(\frac{y}{x})^{-\frac{1}{2}}}=Cy. x y e 2 ( x y ) − 2 1 = x ⋅ C e 2 ( x y ) − 2 1 = C y .
Comments