Question #300203

Solve the Bernoulli Equation xyy+y2=2xxyy'+y^2=2x


1
Expert's answer
2022-02-21T16:36:30-0500

Given:

xyy+y2=2xxyy'+y^2=2x


We use the substitution

v=y2v=y^2

Then

v=2yyv'=2yy'

We get the next DE

x2v+v=2x\frac{x}{2}v'+v=2x

v+2xv=4v'+\frac{2}{x}v=4

μ(x)=e2xdx=e2lnx=x2\mu(x)=e^{\int \frac{2}{x}dx}=e^{2 \ln x}=x^2

x2v+2xv=4x2x^2v'+2xv=4x^2

(x2v)=4x2(x^2v)'=4x^2

x2v=(4/3)x3+Cx^2v=(4/3)x^3+C

v=(4/3)x+C/x2v=(4/3)x+C/x^2

y=±(4/3)x+C/x2y=\pm\sqrt{(4/3)x+C/x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS