The given DE can be written in the form:
"\\frac{1}{y^2}\\dfrac{dy}{dx} + \\frac{1}{y}= 2x" which is a Bernoulli type of first order DE.
"\\text{Solve Bernoulli's equation }\\frac{1}{y(x)}+\\frac{\\frac{d y(x)}{d x}}{y(x)^{2}}=2 x:\\\\[3mm]\n\\text{Multiply both sides by }-1 :\\\\\n-\\frac{\\frac{d y(x)}{d x}}{y(x)^{2}}-\\frac{1}{y(x)}=-2 x\\\\\n\\text{Let }v(x)=\\frac{1}{y(x)}, \\text{ which gives }\\frac{d v(x)}{d x}=-\\frac{\\frac{d y(x)}{d x}}{y(x)^{2}}:\\\\\n\\frac{d v(x)}{d x}-v(x)=-2 x \\text{ Let }\\mu(x)=e^{\\int-1 d x}=e^{-x}.\\\\[3mm]\n\\text{Multiply both sides by }\\mu(x) :\\\\\ne^{-x} \\frac{d v(x)}{d x}-e^{-x} v(x)=-2 e^{-x} x\\\\\n\\text{Substitute }-e^{-x}=\\frac{d}{d x}\\left(e^{-x}\\right):\\\\\ne^{-x} \\frac{d v(x)}{d x}+\\frac{d}{d x}\\left(e^{-x}\\right) v(x)=-2 e^{-x} x\\\\"
"\\text{Apply the reverse product rule } f \\frac{d g}{d x}+g \\frac{d f}{d x}=\\frac{d}{d x}(f g)\\text{ to the left-hand side}:\\\\\n\\frac{d}{d x}\\left(e^{-x} v(x)\\right)=-2 e^{-x} x\\\\[3mm]\n\\text{Integrate both sides with respect to }x :\\\\[3mm]\n\\int \\frac{d}{d x}\\left(e^{-x} v(x)\\right) d x=\\int-2 e^{-x} x d x\\\\[3mm]\n\n\\text{Evaluate the integrals}:\\\\\ne^{-x} v(x)=-2 e^{-x}(-x-1)+c_{1},\\text{ where } c_{1} \\text{ is an arbitrary constant.}\\\\[3mm]\n\\text{Divide both sides by }\\mu(x)=e^{-x}:\\\\[3mm]\n\nv(x)=2 x+c_{1} e^{x}+2" Solving for "y(x)", we have:
"y(x)=\\frac{1}{v(x)}=\\frac{1}{2 x+c_{1} e^{x}+2}"
Which is the required solution of the given DE.
Comments
Leave a comment