Let us write the characteristic equation for this DE:
λ2−2λ+2=0,λ1=1−i,λ2=1+i.
So the solution of the equation will be y=y1+y2=C1exsin(x)+C2excos(x).
y(0)=0⇒C1⋅1⋅sin(0)+C2⋅1⋅cos(0)=0+C2=0,⇒C2=0.
y′(0)=1⇒(C1exsin(x))′=C1exsin(x)+C1excos(x),(C1exsin(x))′∣x=0=C1=1.
The final solution is y=exsin(x).
Comments