Answer to Question #302574 in Differential Equations for haru

Question #302574

Solve the following initial value problems using method of undetermined coefficients: (ii) y''+y' = 5xsinx, y(0) = 0,y(0) = 1.


1
Expert's answer
2022-02-27T15:02:24-0500

y+y=5xsinxy(0)=0,y(0)=1y=y1+y21)y+y=0λ2+λ=0λ(λ+1)=0λ1=0,λ2=1y1=C1+C2exy''+y'=5xsinx\\ y(0)=0, y'(0)=1\\ y=y_1+y_2\\ 1) y''+y'=0\\ \lambda^2+\lambda=0\\ \lambda(\lambda+1)=0\\ \lambda_1=0, \lambda_2=-1\\ y_1=C_1+C_2e^{-x}

2)y2=(ax+b)cosx+(kx+p)sinxy2=acosx(ax+b)sinx++ksinx+(kx+p)cosx==(kx+p+a)cosx+(axb+k)sinxy2=kcosx(kx+p+a)sinxasinx+(axb+k)cosx==(axb+2k)cosx+(kxp2a)sinx2) y_2=(ax+b)cosx+(kx+p)sinx\\ y_2'=acosx-(ax+b)sinx+\\+ksinx+(kx+p)cosx=\\ =(kx+p+a)cosx+(-ax-b+k)sinx\\ y_2''=kcosx-(kx+p+a)sinx-\\-asinx+(-ax-b+k)cosx=\\ =(-ax-b+2k)cosx+(-kx-p-2a)sinx


(axb+2k)cosx+(kxp2a)sinx++(kx+p+a)cosx+(axb+k)sinx==5xsinx(-ax-b+2k)cosx+(-kx-p-2a)sinx+\\ +(kx+p+a)cosx+(-ax-b+k)sinx=\\=5xsinx


xcosx:a+k=0cosx:b+2k+p+a=0xsinx:ka=5sinx:p2ab+k=0xcosx: -a+k=0\\ cosx: -b+2k+p+a=0\\ xsinx:-k-a=5\\ sinx:-p-2a-b+k=0


a=52,k=52,b=52,p=5y2=(52x+52)cosx+(52x+5)sinxa=-\frac{5}{2}, k=-\frac{5}{2}, b=\frac{5}{2}, p=5\\ y_2=(-\frac{5}{2}x+\frac{5}{2})cosx+(-\frac{5}{2}x+5)sinx


y=C1+C2ex++(52x+52)cosx+(52x+5)sinxy=C2ex(52x+52)sinx52cosx+(52x+5)cosx52sinxy(0)=0C1+C2+52=0y(0)=1C252+5=1C2=32,C1=4y=C_1+C_2e^{-x}+\\+(-\frac{5}{2}x+\frac{5}{2})cosx+(-\frac{5}{2}x+5)sinx\\ y'=-C_2e^{-x}-(-\frac{5}{2}x+\frac{5}{2})sinx-\\ -\frac{5}{2}cosx+(-\frac{5}{2}x+5)cosx-\frac{5}{2}sinx\\ y(0)=0\\ C_1+C_2+\frac{5}{2}=0\\ y'(0)=1\\ -C_2-\frac{5}{2}+5=1\\ C_2=\frac{3}{2}, C_1=-4


y=4+32ex++(52x+52)cosx+(52x+5)sinxy=-4+\frac{3}{2}e^{-x}+\\+(-\frac{5}{2}x+\frac{5}{2})cosx+(-\frac{5}{2}x+5)sinx


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment