Question #302576

Find the general solution of the following differential equations using method of undetermined coefficients: (i) y''−2y'+y =x2e5x,


1
Expert's answer
2022-03-01T15:49:26-0500

Corresponding homogeneous differential equation


y2y+y=0y''−2y'+y =0

Characteristic (auxiliary) equation


r22r+1=0r^2-2r+1=0

r1=r2=1r_1=r_2=1

The general solution of the homogeneous differential equation is


yh=c1ex+c2xexy_h=c_1e^x+c_2xe^x

Find the particular solution of the non homogeneous differential equation


yp=(Ax2+Bx+C)e5xy_p=(Ax^2+Bx+C)e^{5x}

yp=5(Ax2+Bx+C)e5xy_p'=5(Ax^2+Bx+C)e^{5x}

+(2Ax+B)e5x+(2Ax+B)e^{5x}

yp=25(Ax2+Bx+C)e5xy_p''=25(Ax^2+Bx+C)e^{5x}

+10(2Ax+B)e5x+2Ae5x+10(2Ax+B)e^{5x}+2Ae^{5x}

Substitute


25(Ax2+Bx+C)e5x25(Ax^2+Bx+C)e^{5x}

+10(2Ax+B)e5x+2Ae5x+10(2Ax+B)e^{5x}+2Ae^{5x}

10(Ax2+Bx+C)e5x2(2Ax+B)e5x-10(Ax^2+Bx+C)e^{5x}-2(2Ax+B)e^{5x}

+(Ax2+Bx+C)e5x=x2e5x+(Ax^2+Bx+C)e^{5x}=x^2e^{5x}

16Ax2+(16B+16A)x+16C+8B+2A=x216Ax^2+(16B+16A)x+16C+8B+2A=x^2

A=1/16A=1/16

B=1/16B=-1/16

C=3/128C=3/128

yp=(116x2116x+3128)e5xy_p=(\dfrac{1}{16}x^2-\dfrac{1}{16}x+\dfrac{3}{128})e^{5x}

The general solution of the non homogeneous differential equation is


y=c1ex+c2xex+(116x2116x+3128)e5xy=c_1e^x+c_2xe^x+(\dfrac{1}{16}x^2-\dfrac{1}{16}x+\dfrac{3}{128})e^{5x}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS