Corresponding homogeneous differential equation
y′′−2y′+y=0 Characteristic (auxiliary) equation
r2−2r+1=0
r1=r2=1 The general solution of the homogeneous differential equation is
yh=c1ex+c2xex Find the particular solution of the non homogeneous differential equation
yp=(Ax2+Bx+C)e5x
yp′=5(Ax2+Bx+C)e5x
+(2Ax+B)e5x
yp′′=25(Ax2+Bx+C)e5x
+10(2Ax+B)e5x+2Ae5x Substitute
25(Ax2+Bx+C)e5x
+10(2Ax+B)e5x+2Ae5x
−10(Ax2+Bx+C)e5x−2(2Ax+B)e5x
+(Ax2+Bx+C)e5x=x2e5x
16Ax2+(16B+16A)x+16C+8B+2A=x2
A=1/16
B=−1/16
C=3/128
yp=(161x2−161x+1283)e5x The general solution of the non homogeneous differential equation is
y=c1ex+c2xex+(161x2−161x+1283)e5x
Comments