(1 + π₯^2) (xdy+ydx) =-2yx^2
The given DE is not solvable, we put dx on right side.
(1+π₯2)(xdy+ydx)=β2yx2dxβ(1+x2)(d(xy))=β2yx2dx(1 + π₯^2) (xdy+ydx) =-2yx^2 dx \\ \Rightarrow (1+x^2)(d(xy))=-2yx^2dx(1+x2)(xdy+ydx)=β2yx2dxβ(1+x2)(d(xy))=β2yx2dx
βd(xy)=β2yx21+x2dxβd(xy)xy=β2x1+x2dx\Rightarrow d(xy)=-\dfrac{2yx^2}{1+x^2} dx \\ \Rightarrow \dfrac{d(xy)}{xy}=-\dfrac{2x}{1+x^2}dxβd(xy)=β1+x22yx2βdxβxyd(xy)β=β1+x22xβdx
On integrating both sides,
lnβ‘(xy)=βlnβ‘(1+x2)+lnβ‘Cβlnβ‘(xy(1+x2))=lnβ‘Cβxy(1+x2)=C\ln (xy)=-\ln(1+x^2)+\ln C \\ \Rightarrow \ln (xy(1+x^2))=\ln C \\ \Rightarrow xy(1+x^2)= Cln(xy)=βln(1+x2)+lnCβln(xy(1+x2))=lnCβxy(1+x2)=C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment