Answer to Question #296557 in Differential Equations for Ruhi

Question #296557

(1 + π‘₯^2) (xdy+ydx) =-2yx^2

1
Expert's answer
2022-02-14T11:38:50-0500

Solution:

The given DE is not solvable, we put dx on right side.

(1+π‘₯2)(xdy+ydx)=βˆ’2yx2dxβ‡’(1+x2)(d(xy))=βˆ’2yx2dx(1 + π‘₯^2) (xdy+ydx) =-2yx^2 dx \\ \Rightarrow (1+x^2)(d(xy))=-2yx^2dx

β‡’d(xy)=βˆ’2yx21+x2dxβ‡’d(xy)xy=βˆ’2x1+x2dx\Rightarrow d(xy)=-\dfrac{2yx^2}{1+x^2} dx \\ \Rightarrow \dfrac{d(xy)}{xy}=-\dfrac{2x}{1+x^2}dx

On integrating both sides,

ln⁑(xy)=βˆ’ln⁑(1+x2)+ln⁑Cβ‡’ln⁑(xy(1+x2))=ln⁑Cβ‡’xy(1+x2)=C\ln (xy)=-\ln(1+x^2)+\ln C \\ \Rightarrow \ln (xy(1+x^2))=\ln C \\ \Rightarrow xy(1+x^2)= C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment