(y+z)p+(z+x)q=x+y
"\\displaystyle\n(y+z)p+(z+x)q=x+y"
The auxiliary equations are;
"\\displaystyle\n\\frac{dx}{y+z}=\\frac{dy}{z+x}=\\frac{dz}{x+y}"
From the first two equation, we have;
"\\displaystyle\n\\frac{dx}{y+z}=\\frac{dy}{z+x}\\\\"
integrating both sides yields;
"\\displaystyle\n\\Rightarrow\\frac{x}{y+z}=\\frac{y}{z+x}+a", where a is an arbitrary constant
"\\displaystyle\n\\Rightarrow\\frac{x}{y+z}-\\frac{y}{z+x}=a\\cdots\\cdots\\cdots\\cdots(1)"
From the last two equation, we have;
"\\displaystyle\n\\frac{dy}{z+x}=\\frac{dz}{x+y}"
integrating both sides;
"\\displaystyle\n\\frac{y}{z+x}=\\frac{z}{x+y}+b", where a is an arbitrary constant
"\\displaystyle\n\\Rightarrow\\frac{y}{z+x}-\\frac{z}{x+y}=b\\cdots\\cdots\\cdots\\cdots(2)"
from (1) and (2), we have the solution as;
"\\displaystyle\nf\\left(\\frac{x}{y+z}-\\frac{y}{z+x},\\ \\frac{y}{z+x}-\\frac{z}{x+y}\\right)=0"
Comments
Leave a comment