Question #295785

(y+z)p+(z+x)q=x+y


1
Expert's answer
2022-02-10T14:29:07-0500

(y+z)p+(z+x)q=x+y\displaystyle (y+z)p+(z+x)q=x+y

The auxiliary equations are;

dxy+z=dyz+x=dzx+y\displaystyle \frac{dx}{y+z}=\frac{dy}{z+x}=\frac{dz}{x+y}

From the first two equation, we have;

dxy+z=dyz+x\displaystyle \frac{dx}{y+z}=\frac{dy}{z+x}\\

integrating both sides yields;

xy+z=yz+x+a\displaystyle \Rightarrow\frac{x}{y+z}=\frac{y}{z+x}+a, where a is an arbitrary constant


xy+zyz+x=a(1)\displaystyle \Rightarrow\frac{x}{y+z}-\frac{y}{z+x}=a\cdots\cdots\cdots\cdots(1)

From the last two equation, we have;

dyz+x=dzx+y\displaystyle \frac{dy}{z+x}=\frac{dz}{x+y}

integrating both sides;

yz+x=zx+y+b\displaystyle \frac{y}{z+x}=\frac{z}{x+y}+b, where a is an arbitrary constant


yz+xzx+y=b(2)\displaystyle \Rightarrow\frac{y}{z+x}-\frac{z}{x+y}=b\cdots\cdots\cdots\cdots(2)


from (1) and (2), we have the solution as;

f(xy+zyz+x, yz+xzx+y)=0\displaystyle f\left(\frac{x}{y+z}-\frac{y}{z+x},\ \frac{y}{z+x}-\frac{z}{x+y}\right)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS