Question #295777

Solve the following first order linear equations



1)dy/dx=e^2x+3y



2)xy×dy/dx=2(y+3)



3)(1+x^2).dy/dx-xy(1+y)=0



4)sinx/1+y.dy/dx=cosx



5)cos^2x.dy/dx=y-3




1
Expert's answer
2022-02-10T14:21:15-0500

1)

dydx3y=e2x\displaystyle \frac{dy}{dx}-3y=e^{2x}

Integrating factor =e3x\displaystyle =e^{-3x}

Multiplying both sides of the given DE yields;

ddx(ye3x)=exye3x=ex dx=ex+c,\displaystyle \frac{d}{dx}(ye^{-3x})=e^{-x}\\ ye^{-3x}=\int e^{-x}\ dx=-e^{-x}+c, where c is an arbitrary constant.

y=ce3xe2x\displaystyle \Rightarrow y=ce^{3x}-e^{2x}


2)

xydydx=2(y+3)\displaystyle xy\frac{dy}{dx}=2(y+3)

By method of separation of variables,

yy+3dydx=2x\displaystyle \frac{y}{y+3}\frac{dy}{dx}=\frac{2}{x}

Integrating both sides wrt x yields;

yy+3dydx dx=2x dxyy+3 dy=2x dx(13y+3) dy=2x dxy3ln(y+3)=2ln(x)+ln(c)\displaystyle \int\frac{y}{y+3}\frac{dy}{dx}\ dx=\int\frac{2}{x}\ dx\\ \Rightarrow \int\frac{y}{y+3}\ dy=\int\frac{2}{x}\ dx\\ \Rightarrow\int\left(1-\frac{3}{y+3}\right)\ dy=\int\frac{2}{x}\ dx\\ \Rightarrow y-3\ln(y+3)=2\ln(x)+\ln(c), where c is an arbitrary constant

y=cx2(y+3)3\displaystyle \Rightarrow y=cx^2(y+3)^3


3)

(1+x2)dydxxy(1+y)=0By method of separation of variables,1y(y+1)dydx=x1+x2(1y1y+1)dydx=x1+x2\displaystyle (1+x^2)\frac{dy}{dx}-xy(1+y)=0\\ \text{By method of separation of variables,}\\ \Rightarrow \frac{1}{y(y+1)}\frac{dy}{dx}=\frac{x}{1+x^2}\\ \Rightarrow \left(\frac{1}{y}-\frac{1}{y+1}\right)\frac{dy}{dx}=\frac{x}{1+x^2}, by partial fraction

integrating both sides wrt x yields;

(1y1y+1)dydx dx=x1+x2 dx1y dy1y+1 dy=x1+x2 dxln(y)ln(y+1)=12ln(x2+1)+ln(c)\displaystyle \int\left(\frac{1}{y}-\frac{1}{y+1}\right)\frac{dy}{dx}\ dx=\int\frac{x}{1+x^2}\ dx\\ \Rightarrow\int\frac{1}{y}\ dy-\int\frac{1}{y+1}\ dy=\int\frac{x}{1+x^2}\ dx\\ \Rightarrow \ln(y)-\ln(y+1)=\frac{1}{2}\ln(x^2+1)+\ln(c)\\, where c is an arbitrary constant

yy+1=cx2+1\displaystyle \frac{y}{y+1}=c\sqrt{x^2+1}


4)

sinx1+ydydx=cosx\displaystyle \frac{\sin x}{1+y}\cdot\frac{dy}{dx}=\cos x\\

By method of separation of variables,

11+ydydx=cosxsinx\displaystyle \Rightarrow \frac{1}{1+y}\frac{dy}{dx}=\frac{\cos x}{\sin x}

integrating both sides wrt x yields;

11+ydydx dx=cosxsinx dx11+y dy=cosxsinx dxln(y+1)=ln(sinx)+ln(c)\displaystyle \int\frac{1}{1+y}\frac{dy}{dx}\ dx=\int\frac{\cos x}{\sin x}\ dx\\ \Rightarrow \int\frac{1}{1+y}\ dy=\int\frac{\cos x}{\sin x}\ dx\\ \Rightarrow\ln(y+1)=\ln(\sin x)+\ln(c), where c is an arbitrary constant

y=csinx1\displaystyle \Rightarrow y=c\sin x-1


5)

cos2(x)dydx=y3\displaystyle \cos^2(x)\frac{dy}{dx}=y-3

By method of separation of variables,

1y3dydx=1cos2x\displaystyle \Rightarrow \frac{1}{y-3}\frac{dy}{dx}=\frac{1}{\cos^2 x}

integrating both sides wrt x yields;

1y3dydx dx=1cos2x dx1y3 dy=1cos2x dx1y3 dy=sec2x dxln(y3)=tanx+c,\displaystyle \Rightarrow \int\frac{1}{y-3}\frac{dy}{dx}\ dx=\int\frac{1}{\cos^2 x}\ dx\\ \Rightarrow \int\frac{1}{y-3}\ dy=\int\frac{1}{\cos^2 x}\ dx\\ \Rightarrow \int\frac{1}{y-3}\ dy=\int\sec^2 x\ dx\\ \Rightarrow \ln(y-3)=\tan x+c,where c is an arbitrary constant.

y=3+Aetan(x)\displaystyle \Rightarrow y=3+Ae^{\tan (x)}, where A=ecA=e^c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS