1)
dxdy−3y=e2x
Integrating factor =e−3x
Multiplying both sides of the given DE yields;
dxd(ye−3x)=e−xye−3x=∫e−x dx=−e−x+c, where c is an arbitrary constant.
⇒y=ce3x−e2x
2)
xydxdy=2(y+3)
By method of separation of variables,
y+3ydxdy=x2
Integrating both sides wrt x yields;
∫y+3ydxdy dx=∫x2 dx⇒∫y+3y dy=∫x2 dx⇒∫(1−y+33) dy=∫x2 dx⇒y−3ln(y+3)=2ln(x)+ln(c), where c is an arbitrary constant
⇒y=cx2(y+3)3
3)
(1+x2)dxdy−xy(1+y)=0By method of separation of variables,⇒y(y+1)1dxdy=1+x2x⇒(y1−y+11)dxdy=1+x2x, by partial fraction
integrating both sides wrt x yields;
∫(y1−y+11)dxdy dx=∫1+x2x dx⇒∫y1 dy−∫y+11 dy=∫1+x2x dx⇒ln(y)−ln(y+1)=21ln(x2+1)+ln(c), where c is an arbitrary constant
y+1y=cx2+1
4)
1+ysinx⋅dxdy=cosx
By method of separation of variables,
⇒1+y1dxdy=sinxcosx
integrating both sides wrt x yields;
∫1+y1dxdy dx=∫sinxcosx dx⇒∫1+y1 dy=∫sinxcosx dx⇒ln(y+1)=ln(sinx)+ln(c), where c is an arbitrary constant
⇒y=csinx−1
5)
cos2(x)dxdy=y−3
By method of separation of variables,
⇒y−31dxdy=cos2x1
integrating both sides wrt x yields;
⇒∫y−31dxdy dx=∫cos2x1 dx⇒∫y−31 dy=∫cos2x1 dx⇒∫y−31 dy=∫sec2x dx⇒ln(y−3)=tanx+c,where c is an arbitrary constant.
⇒y=3+Aetan(x), where A=ec
Comments