Solve the following first order linear equations
1)dy/dx=e^2x+3y
2)xy×dy/dx=2(y+3)
3)(1+x^2).dy/dx-xy(1+y)=0
4)sinx/1+y.dy/dx=cosx
5)cos^2x.dy/dx=y-3
1)
"\\displaystyle\n \\frac{dy}{dx}-3y=e^{2x}"
Integrating factor "\\displaystyle\n=e^{-3x}"
Multiplying both sides of the given DE yields;
"\\displaystyle \\frac{d}{dx}(ye^{-3x})=e^{-x}\\\\\nye^{-3x}=\\int e^{-x}\\ dx=-e^{-x}+c," where c is an arbitrary constant.
"\\displaystyle\n\\Rightarrow y=ce^{3x}-e^{2x}"
2)
"\\displaystyle\nxy\\frac{dy}{dx}=2(y+3)"
By method of separation of variables,
"\\displaystyle\n\\frac{y}{y+3}\\frac{dy}{dx}=\\frac{2}{x}"
Integrating both sides wrt x yields;
"\\displaystyle\n\\int\\frac{y}{y+3}\\frac{dy}{dx}\\ dx=\\int\\frac{2}{x}\\ dx\\\\\n\\Rightarrow \\int\\frac{y}{y+3}\\ dy=\\int\\frac{2}{x}\\ dx\\\\\n\\Rightarrow\\int\\left(1-\\frac{3}{y+3}\\right)\\ dy=\\int\\frac{2}{x}\\ dx\\\\\n\\Rightarrow y-3\\ln(y+3)=2\\ln(x)+\\ln(c)", where c is an arbitrary constant
"\\displaystyle\n\\Rightarrow y=cx^2(y+3)^3"
3)
"\\displaystyle\n(1+x^2)\\frac{dy}{dx}-xy(1+y)=0\\\\\n\\text{By method of separation of variables,}\\\\\n\\Rightarrow \\frac{1}{y(y+1)}\\frac{dy}{dx}=\\frac{x}{1+x^2}\\\\\n\n\\Rightarrow \\left(\\frac{1}{y}-\\frac{1}{y+1}\\right)\\frac{dy}{dx}=\\frac{x}{1+x^2}", by partial fraction
integrating both sides wrt x yields;
"\\displaystyle\n\\int\\left(\\frac{1}{y}-\\frac{1}{y+1}\\right)\\frac{dy}{dx}\\ dx=\\int\\frac{x}{1+x^2}\\ dx\\\\\n\\Rightarrow\\int\\frac{1}{y}\\ dy-\\int\\frac{1}{y+1}\\ dy=\\int\\frac{x}{1+x^2}\\ dx\\\\\n\\Rightarrow \\ln(y)-\\ln(y+1)=\\frac{1}{2}\\ln(x^2+1)+\\ln(c)\\\\", where c is an arbitrary constant
"\\displaystyle\n\\frac{y}{y+1}=c\\sqrt{x^2+1}"
4)
"\\displaystyle\n\\frac{\\sin x}{1+y}\\cdot\\frac{dy}{dx}=\\cos x\\\\"
By method of separation of variables,
"\\displaystyle\n\\Rightarrow \\frac{1}{1+y}\\frac{dy}{dx}=\\frac{\\cos x}{\\sin x}"
integrating both sides wrt x yields;
"\\displaystyle\n\\int\\frac{1}{1+y}\\frac{dy}{dx}\\ dx=\\int\\frac{\\cos x}{\\sin x}\\ dx\\\\\n\\Rightarrow \\int\\frac{1}{1+y}\\ dy=\\int\\frac{\\cos x}{\\sin x}\\ dx\\\\\n\\Rightarrow\\ln(y+1)=\\ln(\\sin x)+\\ln(c)", where c is an arbitrary constant
"\\displaystyle\n\\Rightarrow y=c\\sin x-1"
5)
"\\displaystyle\n\\cos^2(x)\\frac{dy}{dx}=y-3"
By method of separation of variables,
"\\displaystyle\n\\Rightarrow \\frac{1}{y-3}\\frac{dy}{dx}=\\frac{1}{\\cos^2 x}"
integrating both sides wrt x yields;
"\\displaystyle\n\\Rightarrow \\int\\frac{1}{y-3}\\frac{dy}{dx}\\ dx=\\int\\frac{1}{\\cos^2 x}\\ dx\\\\\n\\Rightarrow \\int\\frac{1}{y-3}\\ dy=\\int\\frac{1}{\\cos^2 x}\\ dx\\\\\n\\Rightarrow \\int\\frac{1}{y-3}\\ dy=\\int\\sec^2 x\\ dx\\\\\n\\Rightarrow \\ln(y-3)=\\tan x+c,"where c is an arbitrary constant.
"\\displaystyle\n\\Rightarrow y=3+Ae^{\\tan (x)}", where "A=e^c"
Comments
Leave a comment