Question #295355

Solve the following initial value problem using Laplace transform. y''+16y = 2 sin 4t, y(0)=-1/2; y'(0)=0 


1
Expert's answer
2022-02-09T13:03:01-0500

y+16y=2sin4t,y(0)=12,y(0)=0y''+16y=2\sin 4t, y(0)=-\frac{1}{2}, y'(0)=0\\

Use Laplace transform

Lt[y+16y](p)=Lt[2sin4t](p)Lt[y](p)+Lt[16y](p)=2Lt[sin4t](p)p2Lt[y]py(0)y(0)+16Lt[y]=24p2+16p2Lt[y]p(12)0+16Lt[y]=24p2+16(p2+16)Lt[y]=8p2+16p2Lt[y]=8(p2+16)2p2(p2+16)y=Lt1[8(p2+16)2p2(p2+16)](t)y=Lt1[8(p2+16)2](t)Lt1[p2(p2+16)](t)y=116(4tcos4t+sin4t)12cos4tL_t [y''+16y](p)=L_t[2\sin 4t](p)\\ L_t [y''](p)+L_t[16y](p)=2L_t[\sin 4t](p)\\ p^2L_t[y]-py(0)-y'(0)+16L_t[y]=2\cdot\frac{4}{p^2+16}\\ p^2L_t[y]-p(-\frac{1}{2})-0+16L_t[y]=2\cdot\frac{4}{p^2+16}\\ (p^2+16)L_t[y]=\frac{8}{p^2+16}-\frac{p}{2}\\ L_t[y]=\frac{8}{(p^2+16)^2}-\frac{p}{2(p^2+16)}\\ y=L_t^{-1}[\frac{8}{(p^2+16)^2}-\frac{p}{2(p^2+16)}](t)\\ y=L_t^{-1}[\frac{8}{(p^2+16)^2}](t)-L_t^{-1}[\frac{p}{2(p^2+16)}](t)\\ y=\frac{1}{16}(-4t\cos 4t+\sin 4t) -\frac{1}{2} \cos 4t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS