y′′+16y=2sin4t,y(0)=−21,y′(0)=0
Use Laplace transform
Lt[y′′+16y](p)=Lt[2sin4t](p)Lt[y′′](p)+Lt[16y](p)=2Lt[sin4t](p)p2Lt[y]−py(0)−y′(0)+16Lt[y]=2⋅p2+164p2Lt[y]−p(−21)−0+16Lt[y]=2⋅p2+164(p2+16)Lt[y]=p2+168−2pLt[y]=(p2+16)28−2(p2+16)py=Lt−1[(p2+16)28−2(p2+16)p](t)y=Lt−1[(p2+16)28](t)−Lt−1[2(p2+16)p](t)y=161(−4tcos4t+sin4t)−21cos4t
Comments